Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (181) Expression Attributions Wiki
ECB-ANAT-275

Papers associated with mesoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4

Sort Newest To Oldest Sort Oldest To Newest

Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


How to grow a gut: ontogeny of the endoderm in the sea urchin embryo., Wessel GM., Bioessays. June 1, 1999; 21 (6): 459-71.


Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes., Peterson KJ., Dev Biol. March 15, 1999; 207 (2): 419-31.


Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN., Wardle FC., Dev Biol. February 1, 1999; 206 (1): 63-72.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element., Shashikant CS., Proc Natl Acad Sci U S A. December 22, 1998; 95 (26): 15446-51.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms., Davidson EH., Development. September 1, 1998; 125 (17): 3269-90.


Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo., Livingston BT., Dev Biol. January 1, 1998; 193 (1): 90-9.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


SpHbox7, a new Abd-B class homeobox gene from the sea urchin Strongylocentrotus purpuratus: insights into the evolution of hox gene expression and function., Dobias SL., Dev Dyn. December 1, 1996; 207 (4): 450-60.


Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo., Miller RN., Mech Dev. November 1, 1996; 60 (1): 3-12.


A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula., Ruffins SW., Development. January 1, 1996; 122 (1): 253-63.


Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study., Viebahn C., Acta Anat (Basel). January 1, 1995; 154 (2): 99-110.


A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo., Ruffins SW., Dev Biol. November 1, 1993; 160 (1): 285-8.


Later embryogenesis: regulatory circuitry in morphogenetic fields., Davidson EH., Development. July 1, 1993; 118 (3): 665-90.


Phorbol esters alter cell fate during development of sea urchin embryos., Livingston BT., J Cell Biol. December 1, 1992; 119 (6): 1641-8.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


A G-string positive cis-regulatory element in the LpS1 promoter binds two distinct nuclear factors distributed non-uniformly in Lytechinus pictus embryos., Xiang M., Development. December 1, 1991; 113 (4): 1345-55.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Structure and expression of the polyubiquitin gene in sea urchin embryos., Gong ZY., Mol Reprod Dev. February 1, 1991; 28 (2): 111-8.


Endoplasmic reticulum associated glucose-6-phosphatase activity is developmentally regulated and enriched in microsomes of endo/mesoderm in sea urchins., LeBlanc JM., Rouxs Arch Dev Biol. October 1, 1990; 199 (2): 102-106.


Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis., Tomlinson CR., Mol Reprod Dev. April 1, 1990; 25 (4): 328-38.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Insulin-related molecules and insulin effects in the sea urchin embryo., de Pablo F., Dev Biol. November 1, 1988; 130 (1): 304-10.


Cell lineage conversion in the sea urchin embryo., Ettensohn CA., Dev Biol. February 1, 1988; 125 (2): 396-409.


Spatial patterns of metallothionein mRNA expression in the sea urchin embryo., Angerer LM., Dev Biol. August 1, 1986; 116 (2): 543-7.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Ontogeny of the basal lamina in the sea urchin embryo., Wessel GM., Dev Biol. May 1, 1984; 103 (1): 235-45.


Developmental regulation, induction, and embryonic tissue specificity of sea urchin metallothionein gene expression., Nemer M., Dev Biol. April 1, 1984; 102 (2): 471-82.


Localization of a family of MRNAS in a single cell type and its precursors in sea urchin embryos., Lynn DA., Proc Natl Acad Sci U S A. May 1, 1983; 80 (9): 2656-60.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4