Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (192) Expression Attributions Wiki
ECB-ANAT-19

Papers associated with immune system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4

Sort Newest To Oldest Sort Oldest To Newest

Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Contrasting effects of coplanar versus non-coplanar PCB congeners on immunomodulation and CYP1A levels (determined using an adapted ELISA method) in the common sea star Asterias rubens L., Danis B., Aquat Toxicol. September 20, 2004; 69 (4): 371-83.


Evolution of the interleukins., Kaiser P., Dev Comp Immunol. May 3, 2004; 28 (5): 375-94.


[Comparative immunological analysis of echinoderm cellular and humoral defense factors]., Kudriavtsev IV., Zh Obshch Biol. January 1, 2004; 65 (3): 218-31.


Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening., Calestani C., Development. October 1, 2003; 130 (19): 4587-96.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands., Mulvey GL., J Infect Dis. February 15, 2003; 187 (4): 640-9.


The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria., Shah M., Dev Comp Immunol. January 1, 2003; 27 (6-7): 529-38.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


The complexity of immune and alloimmune response., Petrányi GG., Transpl Immunol. August 1, 2002; 10 (2-3): 91-100.


Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata)., Coteur G., Eur J Cell Biol. July 1, 2002; 81 (7): 413-8.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC., Development. April 1, 2002; 129 (8): 1945-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


The ancestral complement system in sea urchins., Smith LC., Immunol Rev. April 1, 2001; 180 16-34.


Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin., Pancer Z., Proc Natl Acad Sci U S A. November 21, 2000; 97 (24): 13156-61.


SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes., Gross PS., Immunogenetics. October 1, 2000; 51 (12): 1034-44.


Cloning and regulation of the rat activin betaE subunit., O'Bryan MK., J Mol Endocrinol. June 1, 2000; 24 (3): 409-18.


Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. February 1, 2000; 42 (1): 41-51.


Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes., Pancer Z., Immunogenetics. August 1, 1999; 49 (9): 773-86.


Role of cell adhesion in the specification of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. December 1, 1998; 40 (6): 609-18.


Sea urchin coelomocytes specifically express a homologue of the complement component C3., Al-Sharif WZ., J Immunol. March 15, 1998; 160 (6): 2983-97.


SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells., Martinez P., Dev Biol. January 15, 1997; 181 (2): 213-22.


Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes., Smith LC., J Immunol. January 15, 1996; 156 (2): 593-602.


Lipopolysaccharide activates the sea urchin immune system., Smith LC., Dev Comp Immunol. January 1, 1995; 19 (3): 217-24.


The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny., Smith LC., Ann N Y Acad Sci. April 15, 1994; 712 213-26.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


The echinoid immune system revisited., Karp RD., Immunol Today. February 1, 1993; 14 (2): 91-2; author reply 93-4.


The echinoid immune system revisited., Cooper EL., Immunol Today. February 1, 1993; 14 (2): 92; author reply 93-4.


The echinoid immune system revisited., Raftos DA., Immunol Today. February 1, 1993; 14 (2): 92-3; author reply 93-4.


The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes., Smith LC., Immunol Today. September 1, 1992; 13 (9): 356-62.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


Immunocompetent cells in the starfish Asterias rubens. An ultrastructural study., Anteunis A., Cell Biol Int Rep. July 1, 1985; 9 (7): 663-70.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Specific immune response in the sea star Asterias rubens: production of "antibody-like" factors., Brillouet C., Cell Immunol. March 1, 1984; 84 (1): 138-44.


Effect of in vivo inoculation of bacteria on the spontaneous cytotoxicity of axial organ cells from Asterias rubens., Leclerc M., Immunol Lett. February 1, 1983; 6 (2): 107-8.


Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus., Gras H., Eur J Cell Biol. February 1, 1981; 23 (2): 258-66.


Induction of either contractile or structural actin-based gels in sea urchin egg cytoplasmic extract., Kane RE., J Cell Biol. September 1, 1980; 86 (3): 803-9.


Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus., Weber W., Cell Tissue Res. January 1, 1980; 206 (1): 21-33.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4