Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (192) Expression Attributions Wiki
ECB-ANAT-19

Papers associated with immune system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus., Weber W., Cell Tissue Res. January 1, 1980; 206 (1): 21-33.


Induction of either contractile or structural actin-based gels in sea urchin egg cytoplasmic extract., Kane RE., J Cell Biol. September 1, 1980; 86 (3): 803-9.


Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus., Gras H., Eur J Cell Biol. February 1, 1981; 23 (2): 258-66.


Effect of in vivo inoculation of bacteria on the spontaneous cytotoxicity of axial organ cells from Asterias rubens., Leclerc M., Immunol Lett. February 1, 1983; 6 (2): 107-8.


Specific immune response in the sea star Asterias rubens: production of "antibody-like" factors., Brillouet C., Cell Immunol. March 1, 1984; 84 (1): 138-44.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Immunocompetent cells in the starfish Asterias rubens. An ultrastructural study., Anteunis A., Cell Biol Int Rep. July 1, 1985; 9 (7): 663-70.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.


The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes., Smith LC., Immunol Today. September 1, 1992; 13 (9): 356-62.


The echinoid immune system revisited., Karp RD., Immunol Today. February 1, 1993; 14 (2): 91-2; author reply 93-4.


The echinoid immune system revisited., Cooper EL., Immunol Today. February 1, 1993; 14 (2): 92; author reply 93-4.


The echinoid immune system revisited., Raftos DA., Immunol Today. February 1, 1993; 14 (2): 92-3; author reply 93-4.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny., Smith LC., Ann N Y Acad Sci. April 15, 1994; 712 213-26.


Lipopolysaccharide activates the sea urchin immune system., Smith LC., Dev Comp Immunol. January 1, 1995; 19 (3): 217-24.


Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes., Smith LC., J Immunol. January 15, 1996; 156 (2): 593-602.


SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells., Martinez P., Dev Biol. January 15, 1997; 181 (2): 213-22.


Sea urchin coelomocytes specifically express a homologue of the complement component C3., Al-Sharif WZ., J Immunol. March 15, 1998; 160 (6): 2983-97.


Role of cell adhesion in the specification of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. December 1, 1998; 40 (6): 609-18.


Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes., Pancer Z., Immunogenetics. August 1, 1999; 49 (9): 773-86.


Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. February 1, 2000; 42 (1): 41-51.


Cloning and regulation of the rat activin betaE subunit., O'Bryan MK., J Mol Endocrinol. June 1, 2000; 24 (3): 409-18.


SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes., Gross PS., Immunogenetics. October 1, 2000; 51 (12): 1034-44.


Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin., Pancer Z., Proc Natl Acad Sci U S A. November 21, 2000; 97 (24): 13156-61.


The ancestral complement system in sea urchins., Smith LC., Immunol Rev. April 1, 2001; 180 16-34.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties., Sweet HC., Development. April 1, 2002; 129 (8): 1945-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Differentiation of immune cells challenged by bacteria in the common European starfish, Asterias rubens (Echinodermata)., Coteur G., Eur J Cell Biol. July 1, 2002; 81 (7): 413-8.


The complexity of immune and alloimmune response., Petrányi GG., Transpl Immunol. August 1, 2002; 10 (2-3): 91-100.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria., Shah M., Dev Comp Immunol. January 1, 2003; 27 (6-7): 529-38.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands., Mulvey GL., J Infect Dis. February 15, 2003; 187 (4): 640-9.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening., Calestani C., Development. October 1, 2003; 130 (19): 4587-96.


[Comparative immunological analysis of echinoderm cellular and humoral defense factors]., Kudriavtsev IV., Zh Obshch Biol. January 1, 2004; 65 (3): 218-31.


Evolution of the interleukins., Kaiser P., Dev Comp Immunol. May 3, 2004; 28 (5): 375-94.


Contrasting effects of coplanar versus non-coplanar PCB congeners on immunomodulation and CYP1A levels (determined using an adapted ELISA method) in the common sea star Asterias rubens L., Danis B., Aquat Toxicol. September 20, 2004; 69 (4): 371-83.


Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus., Egaña AL., Dev Dyn. October 1, 2004; 231 (2): 370-8.


Constitutive expression and alternative splicing of the exons encoding SCRs in Sp152, the sea urchin homologue of complement factor B. Implications on the evolution of the Bf/C2 gene family., Terwilliger DP., Immunogenetics. October 1, 2004; 56 (7): 531-43.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Phagocytic amoebocyte sub populations in the perivisceral coelom of the sea urchin Lytechinus variegatus (Lamarck, 1816)., Borges JC., J Exp Zool A Comp Exp Biol. March 1, 2005; 303 (3): 241-8.


Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate., Nair SV., Physiol Genomics. June 16, 2005; 22 (1): 33-47.


Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity., Lund FE., Mol Med. January 1, 2006; 12 (11-12): 328-33.


An ancient evolutionary origin of the Rag1/2 gene locus., Fugmann SD., Proc Natl Acad Sci U S A. March 7, 2006; 103 (10): 3728-33.


cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification., Ransick A., Dev Biol. September 15, 2006; 297 (2): 587-602.


Genomic insights into the immune system of the sea urchin., Rast JP., Science. November 10, 2006; 314 (5801): 952-6.

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???