Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (233) Expression Attributions Wiki
ECB-ANAT-256

Papers associated with endoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Gene expression in the endoderm during sea urchin development., Livingston B., Zygote. January 1, 2000; 8 Suppl 1 S35-6.


Specification of endoderm and mesoderm in the sea urchin., McClay DR., Zygote. January 1, 2000; 8 Suppl 1 S41.


The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis., Sweet HC., Development. December 1, 1999; 126 (23): 5255-65.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling., Li X., Dev Biol. August 15, 1999; 212 (2): 425-39.


Characterization of a gene encoding a developmentally regulated winged helix transcription factor of the sea urchin Strongylocentrotus purpuratus., David ES., Gene. August 5, 1999; 236 (1): 97-105.


Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos., Ishii M., Dev Growth Differ. June 1, 1999; 41 (3): 241-52.


Lim1 related homeobox gene (HpLim1) expressed in sea urchin embryos., Kawasaki T., Dev Growth Differ. June 1, 1999; 41 (3): 273-82.


How to grow a gut: ontogeny of the endoderm in the sea urchin embryo., Wessel GM., Bioessays. June 1, 1999; 21 (6): 459-71.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo., Sherwood DR., Development. April 1, 1999; 126 (8): 1703-13.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY., Development. January 1, 1999; 126 (2): 345-57.


HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo., Kurokawa D., Mech Dev. January 1, 1999; 80 (1): 41-52.


Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors., Bogarad LD., Proc Natl Acad Sci U S A. December 8, 1998; 95 (25): 14827-32.


Histone deacetylase mRNA temporally and spatially regulated in its expression in sea urchin embryos., Nemer M., Dev Growth Differ. December 1, 1998; 40 (6): 583-90.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms., Davidson EH., Development. September 1, 1998; 125 (17): 3269-90.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


Embryonic and post-embryonic utilization and subcellular localization of the nuclear receptor SpSHR2 in the sea urchin., Kontrogianni-Konstantopoulos A., J Cell Sci. August 1, 1998; 111 ( Pt 15) 2159-69.


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


Differential expression of sea urchin Otx isoform (hpOtxE and HpOtxL) mRNAs during early development., Mitsunaga-Nakatsubo K., Int J Dev Biol. July 1, 1998; 42 (5): 645-51.


Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene., Bellomonte D., Mech Dev. June 1, 1998; 74 (1-2): 185-8.


Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis., Zito F., Dev Biol. April 15, 1998; 196 (2): 184-92.


Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene., Yuh CH., Science. March 20, 1998; 279 (5358): 1896-902.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A., Dev Biol. March 1, 1998; 195 (1): 38-48.


Protein tyrosine kinase activity following fertilization is required to complete gastrulation, but not for initial differentiation of endoderm and mesoderm in the sea urchin embryo., Livingston BT., Dev Biol. January 1, 1998; 193 (1): 90-9.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Specification of endoderm in the sea urchin embryo., Godin RE., Mech Dev. September 1, 1997; 67 (1): 35-47.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Spfkh1 encodes a transcription factor implicated in gut formation during sea urchin development., Luke NH., Dev Growth Differ. June 1, 1997; 39 (3): 285-94.


Isolation and characterization of an endodermally derived, proteoglycan-like extracellular matrix molecule that may be involved in larval starfish digestive tract morphogenesis., Reimer CL., Dev Growth Differ. June 1, 1997; 39 (3): 381-97.


Ultrastructure and synthesis of the extracellular matrix of Pisaster ochraceus embryos preserved by freeze substitution., Crawford BJ., J Morphol. May 1, 1997; 232 (2): 133-53.


Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo., Wikramanayake AH., Development. January 1, 1997; 124 (1): 13-20.


Spatial expression of a forkhead homologue in the sea urchin embryo., Harada Y., Mech Dev. December 1, 1996; 60 (2): 163-73.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W., Mech Dev. December 1, 1996; 60 (2): 185-95.


SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development., McCoon PE., J Biol Chem. August 16, 1996; 271 (33): 20119-25.


WEE1-like CDK tyrosine kinase mRNA level is regulated temporally and spatially in sea urchin embryos., Nemer M., Mech Dev. August 1, 1996; 58 (1-2): 75-88.


Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo., Chen SW., Dev Biol. April 10, 1996; 175 (1): 57-65.


Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo., Yuh CH., Development. April 1, 1996; 122 (4): 1069-82.


Regulative capacity of the archenteron during gastrulation in the sea urchin., McClay DR., Development. February 1, 1996; 122 (2): 607-16.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.


A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula., Ruffins SW., Development. January 1, 1996; 122 (1): 253-63.


An orthodenticle-related protein from Strongylocentrotus purpuratus., Gan L., Dev Biol. February 1, 1995; 167 (2): 517-28.


Complexity and organization of DNA-protein interactions in the 5''-regulatory region of an endoderm-specific marker gene in the sea urchin embryo., Yuh CH., Mech Dev. August 1, 1994; 47 (2): 165-86.


Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos., Ransick A., Mech Dev. August 1, 1993; 42 (3): 117-24.


Differential expression and function of cadherin-like proteins in the sea urchin embryo., Ghersi G., Mech Dev. April 1, 1993; 41 (1): 47-55.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


Phorbol esters alter cell fate during development of sea urchin embryos., Livingston BT., J Cell Biol. December 1, 1992; 119 (6): 1641-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???