Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (233) Expression Attributions Wiki
ECB-ANAT-256

Papers associated with endoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


Structure, expression, and transcriptional regulation of the Strongylocentrotus franciscanus spec gene family encoding intracellular calcium-binding proteins., Villinski JT., Dev Genes Evol. August 1, 2005; 215 (8): 410-22.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo., Peterson RE., Dev Biol. June 1, 2005; 282 (1): 126-37.


Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo., Yuh CH., Dev Biol. May 15, 2005; 281 (2): 286-98.


Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer., Kiyama T., Dev Biol. April 15, 2005; 280 (2): 436-47.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network., Yuh CH., Dev Biol. May 15, 2004; 269 (2): 536-51.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


Developmental gene regulatory network architecture across 500 million years of echinoderm evolution., Hinman VF., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13356-61.


Expression and function of a starfish Otx ortholog, AmOtx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa., Hinman VF., Mech Dev. October 1, 2003; 120 (10): 1165-76.


Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos., Kenny AP., Dev Biol. September 15, 2003; 261 (2): 412-25.


Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation., Romano LA., Development. September 1, 2003; 130 (17): 4187-99.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P., Dev Biol. June 1, 2003; 258 (1): 32-43.


LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo., Gross JM., Development. May 1, 2003; 130 (9): 1989-99.


Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis., Croce J., Mech Dev. May 1, 2003; 120 (5): 561-72.


The color purple: analyzing alkaline phosphatase expression in experimentally manipulated sea urchin embryos in an undergraduate developmental biology course., Drawbridge J., Int J Dev Biol. January 1, 2003; 47 (2-3): 161-4.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins., Minsuk SB., Dev Biol. July 15, 2002; 247 (2): 335-50.


Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin., Yuh CH., Dev Biol. June 1, 2002; 246 (1): 148-61.


brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening., Rast JP., Dev Biol. June 1, 2002; 246 (1): 191-208.


A glimpse into the molecular entrails of endoderm formation., Stainier DY., Genes Dev. April 15, 2002; 16 (8): 893-907.


Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm., Consales C., Gene. April 3, 2002; 287 (1-2): 75-81.


Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus., Illies MR., Mech Dev. April 1, 2002; 113 (1): 61-4.


A genomic regulatory network for development., Davidson EH., Science. March 1, 2002; 295 (5560): 1669-78.


Molecular patterning along the sea urchin animal-vegetal axis., Brandhorst BP., Int Rev Cytol. January 1, 2002; 213 183-232.


Potential of veg2 blastomeres to induce endoderm differentiation in sea urchin embryos., Iijima M., Zoolog Sci. January 1, 2002; 19 (1): 81-5.


Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus., Croce J., Dev Genes Evol. December 1, 2001; 211 (12): 617-9.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM., Dev Biol. November 1, 2001; 239 (1): 132-47.


Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene., Martin EL., Dev Biol. August 1, 2001; 236 (1): 46-63.


Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo., Huggins LG., Dev Growth Differ. August 1, 2001; 43 (4): 415-24.


LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo., Sherwood DR., Development. June 1, 2001; 128 (12): 2221-32.


Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements., Yuh CH., Dev Biol. April 15, 2001; 232 (2): 424-38.


Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates., Holland LZ., Dev Biol. April 15, 2001; 232 (2): 493-507.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Regulating potential in development of a direct developing echinoid, Peronella japonica., Kitazawa C., Dev Growth Differ. February 1, 2001; 43 (1): 73-82.


SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos., Howard EW., Development. February 1, 2001; 128 (3): 365-75.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Regulative specification of ectoderm in skeleton disrupted sea urchin embryos treated with monoclonal antibody to Pl-nectin., Zito F., Dev Growth Differ. October 1, 2000; 42 (5): 499-506.


The expression of nonchordate deuterostome Brachyury genes in the ascidian Ciona embryo can promote the differentiation of extra notochord cells., Satoh G., Mech Dev. September 1, 2000; 96 (2): 155-63.


A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis., Angerer LM., Development. March 1, 2000; 127 (5): 1105-14.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM., Dev Biol. February 1, 2000; 218 (1): 1-12.


Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins., Huang L., Dev Genes Evol. February 1, 2000; 210 (2): 73-81.


A starfish homolog of mouse T-brain-1 is expressed in the archenteron of Asterina pectinifera embryos: possible involvement of two T-box genes in starfish gastrulation., Shoguchi E., Dev Growth Differ. February 1, 2000; 42 (1): 61-8.


Conservation of the WD-repeat, microtubule-binding protein, EMAP, in sea urchins, humans, and the nematode C. elegans., Suprenant KA., Dev Genes Evol. January 1, 2000; 210 (1): 2-10.


Characterization of a hemichordate fork head/HNF-3 gene expression., Taguchi S., Dev Genes Evol. January 1, 2000; 210 (1): 11-7.


Homeobox genes and sea urchin development., Di Bernardo M., Int J Dev Biol. January 1, 2000; 44 (6): 637-43.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???