Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (134) Expression Attributions Wiki
ECB-ANAT-313

Papers associated with blastocoel

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Study of larval and adult skeletogenic cells in developing sea urchin larvae., Yajima M., Biol Bull. October 1, 2006; 211 (2): 183-92.


Viviparity in the sea star Cryptasterina hystera (Asterinidae)--conserved and modified features in reproduction and development., Byrne M., Biol Bull. April 1, 2005; 208 (2): 81-91.


PM-2: an ECM epitope necessary for morphogenesis in embryos of the starfish, Pisaster ochraceus., Maghsoodi B., J Morphol. March 1, 2005; 263 (3): 310-21.


A novel approach to study adhesion mechanisms by isolation of the interacting system., Coyle-Thompson C., Acta Histochem. January 1, 2005; 107 (4): 243-51.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Focal adhesion kinase (FAK) expression and phosphorylation in sea urchin embryos., García MG., Gene Expr Patterns. March 1, 2004; 4 (2): 223-34.


Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo., Kiyomoto M., Dev Growth Differ. February 1, 2004; 46 (1): 107-14.


Carbohydrate involvement in cellular interactions in sea urchin gastrulation., Khurrum M., Acta Histochem. January 1, 2004; 106 (2): 97-106.


Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo., Zito F., Dev Biol. December 1, 2003; 264 (1): 217-27.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos., Shoguchi E., Dev Genes Evol. October 1, 2002; 212 (9): 407-18.


Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule., Peled-Kamar M., Exp Cell Res. January 1, 2002; 272 (1): 56-61.


Syntaxin, VAMP, and Rab3 are selectively expressed during sea urchin embryogenesis., Conner SD., Mol Reprod Dev. January 1, 2001; 58 (1): 22-9.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


A method of microinjection: delivering monoclonal antibody 1223 into sea urchin embryos., Cho JW., Mol Cells. August 31, 1999; 9 (4): 455-8.


A putative role for carbohydrates in sea urchin gastrulation., Latham VH., Acta Histochem. July 1, 1999; 101 (3): 293-303.


Matrix and mineral in the sea urchin larval skeleton., Wilt FH., J Struct Biol. June 30, 1999; 126 (3): 216-26.


The betaL integrin subunit is necessary for gastrulation in sea urchin embryos., Marsden M., Dev Biol. November 1, 1998; 203 (1): 134-48.


Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos., Tan H., Dev Biol. September 15, 1998; 201 (2): 230-46.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy., Piston DW., Microsc Microanal. July 1, 1998; 4 (4): 404-414.


Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis., Zito F., Dev Biol. April 15, 1998; 196 (2): 184-92.


Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo., Ingersoll EP., Dev Biol. April 1, 1998; 196 (1): 95-106.


Accessing the embryo interior without microinjection., Latham VH., Acta Histochem. April 1, 1998; 100 (2): 193-200.


A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis., Wilt FH., Bioessays. August 1, 1997; 19 (8): 665-8.


Isolation and characterization of an endodermally derived, proteoglycan-like extracellular matrix molecule that may be involved in larval starfish digestive tract morphogenesis., Reimer CL., Dev Growth Differ. June 1, 1997; 39 (3): 381-97.


Ultrastructure and synthesis of the extracellular matrix of Pisaster ochraceus embryos preserved by freeze substitution., Crawford BJ., J Morphol. May 1, 1997; 232 (2): 133-53.


Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues., Guss KA., Development. May 1, 1997; 124 (10): 1899-908.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


Cloning and characterization of novel beta integrin subunits from a sea urchin., Marsden M., Dev Biol. January 15, 1997; 181 (2): 234-45.


Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo., Miller RN., Mech Dev. November 1, 1996; 60 (1): 3-12.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.


Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo., Ramachandran RK., Dev Dyn. September 1, 1995; 204 (1): 77-88.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Developmentally regulated protease expression during sea urchin embryogenesis., Vafa O., Mol Reprod Dev. January 1, 1995; 40 (1): 36-47.


Formation of sea urchin primary mesenchyme: cell shape changes are independent of epithelial detachment., Anstrom JA., Rouxs Arch Dev Biol. December 1, 1994; 204 (2): 146-149.


Distinct pattern of embryonic expression of the sea urchin CyI actin gene in Tripneustes gratilla., Wang AV., Dev Biol. September 1, 1994; 165 (1): 117-25.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation., Ingersoll EP., Dev Biol. June 1, 1994; 163 (2): 351-66.


Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus., Hwang SP., Development. March 1, 1994; 120 (3): 559-68.


Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos., Cameron RA., Mech Dev. January 1, 1994; 45 (1): 31-47.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos., Anstrom JA., J Exp Zool. December 1, 1992; 264 (3): 312-22.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


Characterization and localization of large sulfated glycoproteins in the extracellular matrix of the developing asteroid Pisaster ochraceus., Crawford TJ., Biochem Cell Biol. February 1, 1992; 70 (2): 91-8.


The Development and Larval Form of an Echinothurioid Echinoid, Asthenosoma ijimai, Revisited., Amemiya S., Biol Bull. February 1, 1992; 182 (1): 15-30.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???