Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (134) Expression Attributions Wiki
ECB-ANAT-313

Papers associated with blastocoel

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules., Gibbins JR., J Cell Biol. April 1, 1969; 41 (1): 201-26.


The fine structure of the embryo during the gastrula stage of Comanthus japonica (Echinodermata: Crinoidea)., Holland ND., Tissue Cell. January 1, 1976; 8 (3): 491-510.


Cell migration during the reassembly of dissociated embryonic cells of sea urchins., Hamada SH., Exp Cell Biol. January 1, 1978; 46 (5): 310-24.


Ultrastructure of collagen in sea urchin embryos., Crise-Benson N., Wilehm Roux Arch Dev Biol. March 1, 1979; 186 (1): 65-70.


Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo., Katow H., Differentiation. January 1, 1982; 22 (2): 120-4.


Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos., Spiegel E., Exp Cell Res. March 1, 1983; 144 (1): 47-55.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula., Galileo DS., J Morphol. September 1, 1985; 185 (3): 387-402.


Network structure in the blastocoel of developing sea urchin embryos., Amemiya S., Prog Clin Biol Res. January 1, 1986; 217B 187-90.


Reconstruction of bipinnaria larvae from dissociated embryonic cells of the starfish, Asterina pectinifera., Dan-Sohkawa M., J Embryol Exp Morphol. June 1, 1986; 94 47-60.


What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae?, Yamanaka H., J Embryol Exp Morphol. June 1, 1986; 94 61-71.


The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads., Ettensohn CA., Dev Biol. October 1, 1986; 117 (2): 380-91.


Inhibition of cell migration in sea urchin embryos by beta-D-xyloside., Solursh M., Dev Biol. December 1, 1986; 118 (2): 325-32.


A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression., Benson S., Dev Biol. April 1, 1987; 120 (2): 499-506.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo., Anstrom JA., Development. October 1, 1987; 101 (2): 255-65.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Cell lineage conversion in the sea urchin embryo., Ettensohn CA., Dev Biol. February 1, 1988; 125 (2): 396-409.


Sea urchin primary mesenchyme cells: relation of cell polarity to the epithelial-mesenchymal transformation., Anstrom JA., Dev Biol. November 1, 1988; 130 (1): 57-66.


Extracellular matrix triggers a directed cell migratory response in sea urchin primary mesenchyme cells., Solursh M., Dev Biol. November 1, 1988; 130 (1): 397-401.


Extracellular matrix of sea urchin and other marine invertebrate embryos., Spiegel E., J Morphol. January 1, 1989; 199 (1): 71-92.


Ultrastructure of the basal lamina and its relationship to extracellular matrix of embryos of the starfish Pisaster ochraceus as revealed by anionic dyes., Crawford B., J Morphol. March 1, 1989; 199 (3): 349-361.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


Immunocytochemical evidence for the presence of two domains in the plasma membrane of sea urchin blastomeres., Yazaki I., Rouxs Arch Dev Biol. October 1, 1989; 198 (3): 179-184.


Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo., Tamboline CR., Dev Biol. November 1, 1989; 136 (1): 75-86.


Structural and functional polarity of starfish blastomeres., Kuraishi R., Dev Biol. December 1, 1989; 136 (2): 304-10.


The regulation of primary mesenchyme cell patterning., Ettensohn CA., Dev Biol. August 1, 1990; 140 (2): 261-71.


A fibronectin-related synthetic peptide, Pro-Ala-Ser-Ser, inhibits fibronectin binding to the cell surface, fibronectin-promoted cell migration in vitro, and cell migration in vivo., Katow H., Exp Cell Res. September 1, 1990; 190 (1): 17-24.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J., Dev Biol. November 1, 1990; 142 (1): 86-102.


Immunohistochemical localization of a tenascin-like extracellular matrix protein in sea urchin embryos., Anstrom JA., Rouxs Arch Dev Biol. November 1, 1990; 199 (3): 169-173.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis., Wessel GM., Dev Biol. November 1, 1991; 148 (1): 261-72.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Characterization and localization of large sulfated glycoproteins in the extracellular matrix of the developing asteroid Pisaster ochraceus., Crawford TJ., Biochem Cell Biol. February 1, 1992; 70 (2): 91-8.


The Development and Larval Form of an Echinothurioid Echinoid, Asthenosoma ijimai, Revisited., Amemiya S., Biol Bull. February 1, 1992; 182 (1): 15-30.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos., Anstrom JA., J Exp Zool. December 1, 1992; 264 (3): 312-22.


Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo., Ettensohn CA., Development. September 1, 1993; 119 (1): 155-67.


Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos., Cameron RA., Mech Dev. January 1, 1994; 45 (1): 31-47.


Characterization of a homolog of human bone morphogenetic protein 1 in the embryo of the sea urchin, Strongylocentrotus purpuratus., Hwang SP., Development. March 1, 1994; 120 (3): 559-68.


An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation., Ingersoll EP., Dev Biol. June 1, 1994; 163 (2): 351-66.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Distinct pattern of embryonic expression of the sea urchin CyI actin gene in Tripneustes gratilla., Wang AV., Dev Biol. September 1, 1994; 165 (1): 117-25.


Formation of sea urchin primary mesenchyme: cell shape changes are independent of epithelial detachment., Anstrom JA., Rouxs Arch Dev Biol. December 1, 1994; 204 (2): 146-149.


Developmentally regulated protease expression during sea urchin embryogenesis., Vafa O., Mol Reprod Dev. January 1, 1995; 40 (1): 36-47.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo., Ramachandran RK., Dev Dyn. September 1, 1995; 204 (1): 77-88.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.

???pagination.result.page??? 1 2 3 ???pagination.result.next???