Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (149) Expression Attributions Wiki
ECB-ANAT-174

Papers associated with

Limit to papers also referencing gene:
Results 1 - 50 of 149 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates., Su YH., Proc Natl Acad Sci U S A. June 25, 2019; 116 (26): 12925-12932.


Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              


Anteroposterior molecular registries in ectoderm of the echinus rudiment., Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              


A key role for foxQ2 in anterior head and central brain patterning in insects., Kitzmann P., Development. August 15, 2017; 144 (16): 2969-2981.                    


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.            


Troponin-I is present as an essential component of muscles in echinoderm larvae., Yaguchi S., Sci Rep. March 8, 2017; 7 43563.          


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):                 


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo., Barsi JC., Dev Biol. January 1, 2016; 409 (1): 310-318.


Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus., Katow H., Front Zool. January 1, 2016; 13 27.                  


Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.


A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          


A computational model for BMP movement in sea urchin embryos., van Heijster P., J Theor Biol. December 21, 2014; 363 277-89.


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.


Eph-Ephrin signaling and focal adhesion kinase regulate actomyosin-dependent apical constriction of ciliary band cells., Krupke OA., Development. March 1, 2014; 141 (5): 1075-84.


Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo., Kalampoki LG., PLoS One. January 1, 2014; 9 (11): e109274.                    


New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN., Li E., Dev Biol. October 1, 2013; 382 (1): 268-79.


Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo., Molina MD., Curr Opin Genet Dev. August 1, 2013; 23 (4): 445-53.


Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning., Yankura KA., Proc Natl Acad Sci U S A. May 21, 2013; 110 (21): 8591-6.


Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD., Dev Biol. May 1, 2013; 377 (1): 236-44.


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo., Li E., Dev Biol. September 15, 2012; 369 (2): 377-85.


Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling., Wei Z., Development. May 1, 2012; 139 (9): 1662-9.


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Unusual coelom formation in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.


Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo., Range R., Dev Biol. September 15, 2011; 357 (2): 440-9.


Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms)., Röttinger E., Dev Biol. June 1, 2011; 354 (1): 173-90.


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


Nodal-mediated epigenesis requires dynamin-mediated endocytosis., Ertl RP., Dev Dyn. March 1, 2011; 240 (3): 704-11.


Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans., Bergeron KF., Mech Dev. January 1, 2011; 128 (1-2): 71-89.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example., Bolouri H., Dev Biol. April 15, 2010; 340 (2): 170-8.


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2., Coffman JA., Dev Biol. June 1, 2009; 330 (1): 123-30.

Page(s): 1 2 3 Next