Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (271) Expression Attributions Wiki
ECB-ANAT-257

Papers associated with archenteron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I., Dev Biol. July 1, 2021; 475 131-144.


Na+/H+-exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva., Petersen I., J Exp Biol. April 1, 2021; 224 (7):


Gastrulation in the sea urchin., McClay DR., Curr Top Dev Biol. January 1, 2020; 136 195-218.


MITF: an evolutionarily conserved transcription factor in the sea urchin Paracentrotus lividus., Russo R., Genetica. December 1, 2019; 147 (5-6): 369-379.


Regeneration of the cell mass in larvae of temnopleurid sea urchins., Kasahara M., J Exp Zool B Mol Dev Evol. November 1, 2019; 332 (7): 245-257.


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  


Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification., Lee HG., Comp Biochem Physiol A Mol Integr Physiol. August 1, 2019; 234 87-97.


Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron., Hardin J., Mol Biol Cell. July 22, 2019; 30 (16): 1911-1919.          


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              


Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development., Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea)., Ezhova OV., J Morphol. June 1, 2018; 279 (6): 792-808.


Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo., Sepúlveda-Ramírez SP., Dev Biol. May 15, 2018; 437 (2): 140-151.            


The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian., He LS., Appl Environ Microbiol. January 1, 2018; 84 (1):


Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids., Erkenbrack EM., Dev Genes Evol. January 1, 2018; 228 (1): 1-11.


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus., Perillo M., Front Endocrinol (Lausanne). January 1, 2018; 9 650.            


New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus., Martik ML., Mech Dev. December 1, 2017; 148 3-10.


IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva., Buckley KM., Elife. April 27, 2017; 6                                   


Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b., Cui M., Cell Rep. April 11, 2017; 19 (2): 364-374.


An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response., Buckley KM., Front Immunol. March 13, 2017; 8 1297.    


Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan., Koop D., BMC Dev Biol. February 13, 2017; 17 (1): 4.          


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


Terminal alpha-d-mannosides are critical during sea urchin gastrulation., Aleksanyan H., Zygote. October 1, 2016; 24 (5): 775-82.


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Cilia are required for asymmetric nodal induction in the sea urchin embryo., Tisler M., BMC Dev Biol. August 23, 2016; 16 (1): 28.        


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase., Liang J., Zygote. June 1, 2016; 24 (3): 371-7.


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):                 


A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva., Perillo M., BMC Evol Biol. May 26, 2016; 16 (1): 117.              


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.            


Analysis of coelom development in the sea urchin Holopneustes purpurescens yielding a deuterostome body plan., Morris VB., Biol Open. February 18, 2016; 5 (3): 348-58.                  


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Changes in Sediment Fatty Acid Composition during Passage through the Gut of Deposit Feeding Holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835)., Mfilinge PL., J Lipids. January 1, 2016; 2016 4579794.      


Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity., Karakostis K., Sci Rep. December 7, 2015; 5 17665.            


Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron., Long JT., Genesis. December 1, 2015; 53 (12): 762-9.


Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          


Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.


ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos., Shipp LE., Development. October 15, 2015; 142 (20): 3537-48.


Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin., Magesky A., Aquat Toxicol. October 1, 2015; 167 106-23.


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus., Kikuchi M., Dev Genes Evol. September 1, 2015; 225 (5): 275-86.


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes., Stumpp M., Sci Rep. June 8, 2015; 5 10421.      


Restricted expression of karyopherin alpha mRNA in the sea urchin suggests a role in neurogenesis., Byrum CA., Gene Expr Patterns. September 1, 2014; 16 (1): 51-60.


A role for polyglucans in a model sea urchin embryo cellular interaction., Singh S., Zygote. August 1, 2014; 22 (3): 419-29.

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???