Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (85) Expression Attributions Wiki
ECB-ANAT-81

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.   


Asymmetric division through a reduction of microtubule centering forces., SallĂ© J., J Cell Biol. March 4, 2019; 218 (3): 771-782.   


Resistance is futile: Centering forces yield for asymmetric cell division., Alper J., J Cell Biol. March 4, 2019; 218 (3): 727-728.   


Physical Forces Determining the Persistency and Centering Precision of Microtubule Asters., Tanimoto H., Nat Phys. August 1, 2018; 14 (8): 848-854.   


Quantitative approaches for the study of microtubule aster motion in large eggs., Tanimoto H., Methods Cell Biol. January 1, 2017; 139 69-80.


Using sea urchin gametes and zygotes to investigate centrosome duplication., Sluder G., Cilia. September 6, 2016; 5 (1): 20.   


Mother centrioles are kicked out so that starfish zygote can grow., Verlhac MH., J Cell Biol. March 28, 2016; 212 (7): 759-61.   


Shape-motion relationships of centering microtubule asters., Tanimoto H., J Cell Biol. March 28, 2016; 212 (7): 777-87.   


Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium., Bement WM., Nat Cell Biol. November 1, 2015; 17 (11): 1471-83.   


The effect of taxol microinjection on the microtubular structure in polar body formation of starfish oocytes., Kikuchi Y., Cytoskeleton (Hoboken). February 1, 2012; 69 (2): 125-32.


Action at a distance during cytokinesis., von Dassow G., J Cell Biol. December 14, 2009; 187 (6): 831-45.   


Cyclin B-cdk1 controls pronuclear union in interphase., Tachibana K., Curr Biol. September 9, 2008; 18 (17): 1308-13.


Bipolar, anastral spindle development in artificially activated sea urchin eggs., Henson JH., Dev Dyn. May 1, 2008; 237 (5): 1348-58.


[Quantity of functionally changed cells as an identificator of the moment of the organizmus transfer to the next period of development]., Shabalkin IP., Tsitologiia. January 1, 2007; 49 (1): 21-5.


Determination of first cleavage plane: the relationships between the orientation of the mitotic apparatus for first cleavage and the position of meiotic division-related structures in starfish eggs., Kitajima A., Dev Biol. April 1, 2005; 280 (1): 48-58.


The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs., Yoshigaki T., Bull Math Biol. July 1, 2002; 64 (4): 643-72.


Displacement of the mitotic apparatus which induces ectopic polar body formation or parthenogenetic cleavage in starfish oocytes., Hamaguchi Y., Dev Biol. November 15, 2001; 239 (2): 364-75.


Measurement of the intracellular pH threshold for sperm aster formation in sea urchin eggs., Hamaguchi MS., Dev Growth Differ. August 1, 2001; 43 (4): 447-58.


MAP kinase, a universal suppressor of sperm centrosomes during meiosis?, Stephano JL., Dev Biol. June 15, 2000; 222 (2): 420-8.


Premeiotic aster as a device to anchor the germinal vesicle to the cell surface of the presumptive animal pole in starfish oocytes., Miyazaki A., Dev Biol. February 15, 2000; 218 (2): 161-71.


Parameters that specify the timing of cytokinesis., Shuster CB., J Cell Biol. September 6, 1999; 146 (5): 981-92.   


Aster-forming abilities of the egg, polar body, and sperm centrosomes in early starfish development., Saiki T., Dev Biol. November 1, 1998; 203 (1): 62-74.


Effect of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, on the first mitotic divisions of the fertilized sea urchin egg., De Nadai C., J Cell Sci. September 1, 1998; 111 ( Pt 17) 2507-18.


A cytoplasmic dynein required for mitotic aster formation in vivo., Inoue S., J Cell Sci. September 1, 1998; 111 ( Pt 17) 2607-14.


Caulerpenyne interferes with microtubule-dependent events during the first mitotic cycle of sea urchin eggs., Pesando D., Eur J Cell Biol. September 1, 1998; 77 (1): 19-26.


Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration., Inoue S., J Cell Sci. June 1, 1998; 111 ( Pt 11) 1555-66.


The coordination of centrosome reproduction with nuclear events of the cell cycle in the sea urchin zygote., Hinchcliffe EH., J Cell Biol. March 23, 1998; 140 (6): 1417-26.   


Recruitment of maternal material during assembly of the zygote centrosome in fertilized sea urchin eggs., Holy J., Cell Tissue Res. August 1, 1997; 289 (2): 285-97.


Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics., Fechter J., Cell Motil Cytoskeleton. January 1, 1996; 35 (4): 281-8.


Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes., Sluder G., J Cell Biol. June 1, 1995; 129 (6): 1447-58.


Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics., Ookata K., J Cell Biol. March 1, 1995; 128 (5): 849-62.


Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity., Wright SJ., Cell Motil Cytoskeleton. January 1, 1995; 30 (2): 122-35.


Cleavage in conical sand dollar eggs., Rappaport R., Dev Biol. July 1, 1994; 164 (1): 258-66.


Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins., Schatten H., Cell Motil Cytoskeleton. January 1, 1994; 27 (1): 59-68.


The late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis., Hertzler PL., Zygote. November 1, 1993; 1 (4): 287-96.


Calyculin A induces contractile ring-like apparatus formation and condensation of chromosomes in unfertilized sea urchin eggs., Tosuji H., Proc Natl Acad Sci U S A. November 15, 1992; 89 (22): 10613-7.


Mitotic apparatus formation and cleavage induction by micromanipulation of the nucleus and centrosome: the centrosome forms a spindle together with only the chromosomes at a short distance., Saiki T., Exp Cell Res. October 1, 1992; 202 (2): 450-7.


Conditions for assembly of tubulin-based structures in unfertilized sea urchin eggs. Spirals, monasters and cytasters., Harris PJ., J Cell Sci. July 1, 1992; 102 ( Pt 3) 557-67.


Activation of maternal centrosomes in unfertilized sea urchin eggs., Schatten H., Cell Motil Cytoskeleton. January 1, 1992; 23 (1): 61-70.


Organelle motility within mitotic asters of the fungus Nectria haematococca., Aist JR., Eur J Cell Biol. December 1, 1991; 56 (2): 358-63.


Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization., Terasaki M., J Cell Biol. September 1, 1991; 114 (5): 929-40.


Effects of 6-dimethylaminopurine on microtubules and putative intermediate filaments in sea urchin embryos., Dufresne L., J Cell Sci. August 1, 1991; 99 ( Pt 4) 721-30.


Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes., Czihak G., Eur J Cell Biol. August 1, 1991; 55 (2): 255-61.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control., Sluder G., J Cell Biol. June 1, 1990; 110 (6): 2025-32.


Calcium in mitosis: role of 51-kD protein in the centrosome of sea urchin egg in aster formation., Sakai H., Adv Exp Med Biol. January 1, 1989; 255 471-80.


Germinal vesicle components are not required for the cell-cycle oscillator of the early starfish embryo., Picard A., Dev Biol. July 1, 1988; 128 (1): 121-8.


Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis., Schatten H., Cell Motil Cytoskeleton. January 1, 1988; 11 (4): 248-59.


Micromanipulation studies of the mitotic apparatus in sand dollar eggs., Hiramoto Y., Cell Motil Cytoskeleton. January 1, 1988; 10 (1-2): 172-84.


51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro., Toriyama M., Cell Motil Cytoskeleton. January 1, 1988; 9 (2): 117-28.

???pagination.result.page??? 1 2 ???pagination.result.next???