Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (99) Expression Attributions Wiki
ECB-ANAT-330

Papers associated with coelom

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Non-specific immune factors differences in coelomic fluid from polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration., Ren Y., Fish Shellfish Immunol. March 1, 2020; 98 160-166.


Regeneration of the cell mass in larvae of temnopleurid sea urchins., Kasahara M., J Exp Zool B Mol Dev Evol. November 1, 2019; 332 (7): 245-257.


Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm., Odekunle EA., BMC Biol. July 31, 2019; 17 (1): 60.                  


Aquaculture Breeding Enhancement: Maturation and Spawning in Sea Cucumbers Using a Recombinant Relaxin-Like Gonad-Stimulating Peptide., Chieu HD., Front Genet. February 19, 2019; 10 77.              


The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel., Peters-Didier J., Evodevo. January 1, 2019; 10 8.              


Anteroposterior molecular registries in ectoderm of the echinus rudiment., Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.


Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea)., Ezhova OV., J Morphol. June 1, 2018; 279 (6): 792-808.


Regeneration of coelomocytes after evisceration in the sea cucumber, Apostichopus japonicus., Li Q., Fish Shellfish Immunol. May 1, 2018; 76 266-271.


Effects of Nodal inhibition on development of temnopleurid sea urchins., Kasahara M., Evol Dev. May 1, 2018; 20 (3-4): 91-99.


The complex simplicity of the brittle star nervous system., Zueva O., Front Zool. February 1, 2018; 15 1.                                        


Body wall structure in the starfish Asterias rubens., Blowes LM., J Anat. September 1, 2017; 231 (3): 325-341.            


Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan., Koop D., BMC Dev Biol. February 13, 2017; 17 (1): 4.          


Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells., Kalacheva NV., PLoS One. January 1, 2017; 12 (7): e0182001.                      


Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus., Geng C., Springerplus. November 3, 2016; 5 (1): 1977.          


Differential count and time-course analysis of the cellular composition of coelomocyte aggregate of the Japanese sea cucumber Apostichopus japonicus., Taguchi M., Fish Shellfish Immunol. November 1, 2016; 58 203-209.


Reproduction of the long-spined sea urchin Diadema setosum in the Gulf of Aqaba - implications for the use of gonad-indexes., Bronstein O., Sci Rep. July 12, 2016; 6 29569.            


Ultrastructural evidence of the excretory function in the asteroid axial organ (Asteroidea, Echinodermata)., Ezhova OV., Dokl Biol Sci. May 1, 2016; 468 (1): 129-32.


Analysis of coelom development in the sea urchin Holopneustes purpurescens yielding a deuterostome body plan., Morris VB., Biol Open. February 18, 2016; 5 (3): 348-58.                  


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


Echinoderm conundrums: Hox genes, heterochrony, and an excess of mouths., Lacalli T., Evodevo. December 22, 2014; 5 (1): 46.  


Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae., Heyland A., PLoS One. December 1, 2014; 9 (12): e113866.              


Phylogenomic resolution of the hemichordate and echinoderm clade., Cannon JT., Curr Biol. December 1, 2014; 24 (23): 2827-32.


Phylogeny of Myzostomida (Annelida) and their relationships with echinoderm hosts., Summers MM., BMC Evol Biol. August 28, 2014; 14 170.          


Hox expression in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. August 1, 2014; 243 (8): 1020-9.


How Hox genes can shed light on the place of echinoderms among the deuterostomes., David B., Evodevo. June 17, 2014; 5 22.              


A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment., Heyland A., BMC Dev Biol. May 19, 2014; 14 22.          


Autotomy of the Visceral mass in the feather star Himerometra robustipinna (Crinoidea, Comatulida)., Bobrovskaya NV., Biol Bull. April 1, 2014; 226 (2): 81-91.


Piwi regulates Vasa accumulation during embryogenesis in the sea urchin., Yajima M., Dev Dyn. March 1, 2014; 243 (3): 451-8.


Determination of sialic acids in immune system cells (coelomocytes) of sea urchin, Paracentrotus lividus, using capillary LC-ESI-MS/MS., İzzetoğlu S., Fish Shellfish Immunol. January 1, 2014; 36 (1): 181-6.        


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            


A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the echinoid Clypeaster rosaceus., Zigler KS., Biol Bull. August 1, 2013; 224 (3): 192-9.


Radial glial cells play a key role in echinoderm neural regeneration., Mashanov VS., BMC Biol. April 18, 2013; 11 49.                        


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


Evolution of a novel muscle design in sea urchins (Echinodermata: Echinoidea)., Ziegler A., PLoS One. January 1, 2012; 7 (5): e37520.              


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Unusual coelom formation in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.


Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus., Omori A., Gene Expr Patterns. January 1, 2011; 11 (1-2): 48-56.


Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan., Morris VB., Evol Dev. January 1, 2011; 13 (4): 370-81.


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Characterization and expression of a sea star otx ortholog (Protxβ1/2) in the larva of Patiriella regularis., Elia L., Gene Expr Patterns. January 1, 2010; 10 (7-8): 323-7.


Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua., Cisternas P., Dev Genes Evol. December 1, 2009; 219 (11-12): 613-8.


Role of the nanos homolog during sea urchin development., Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.


Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea)., Ziegler A., Front Zool. June 9, 2009; 6 10.                      


Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes., Morris VB., Proc Biol Sci. April 7, 2009; 276 (1660): 1277-84.


The major yolk protein is synthesized in the digestive tract and secreted into the body cavities in sea urchin larvae., Unuma T., Mol Reprod Dev. February 1, 2009; 76 (2): 142-50.


Morphogenetic mechanisms of coelom formation in the direct-developing sea urchin Heliocidaris erythrogramma., Smith MS., Dev Genes Evol. January 1, 2009; 219 (1): 21-9.


Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging., Ziegler A., BMC Biol. July 23, 2008; 6 33.            

???pagination.result.page??? 1 2 ???pagination.result.next???