Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (233) Expression Attributions Wiki

Papers associated with

Limit to papers also referencing gene:
Results 1 - 50 of 233 results

Page(s): 1 2 3 4 5 Next

Sort Newest To Oldest Sort Oldest To Newest

A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M., Development. December 16, 2019; 146 (24):                 

Development and evolution of gut structures: from molecules to function., Annunziata R., Cell Tissue Res. September 1, 2019; 377 (3): 445-458.

Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  

Evolution of nitric oxide regulation of gut function., Yaguchi J., Proc Natl Acad Sci U S A. March 19, 2019; 116 (12): 5607-5612.

Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              

Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development., Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.

Transforming growth factor-β signal regulates gut bending in the sea urchin embryo., Suzuki H., Dev Growth Differ. May 1, 2018; 60 (4): 216-225.

New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus., Martik ML., Mech Dev. December 1, 2017; 148 3-10.

Differences in Larval Arm Movements Correlate with the Complexity of Musculature in Two Phylogenetically Distant Echinoids, Eucidaris tribuloides (Cidaroidea) and Lytechinus variegatus (Euechinoidea)., MacNeil KEA., Biol Bull. October 1, 2017; 233 (2): 111-122.

Regulatory states in the developmental control of gene expression., Peter IS., Brief Funct Genomics. September 1, 2017; 16 (5): 281-287.

Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.            

Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b., Cui M., Cell Rep. April 11, 2017; 19 (2): 364-374.

A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse., Ulmer B., Sci Rep. February 21, 2017; 7 43010.                  

Calcium transport into the cells of the sea urchin larva in relation to spicule formation., Vidavsky N., Proc Natl Acad Sci U S A. November 8, 2016; 113 (45): 12637-12642.

Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               

Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                

Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.            

Neurogenic gene regulatory pathways in the sea urchin embryo., Wei Z., Development. January 15, 2016; 143 (2): 298-305.

Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            

Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    

Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron., Long JT., Genesis. December 1, 2015; 53 (12): 762-9.

Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          

Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.

ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos., Shipp LE., Development. October 15, 2015; 142 (20): 3537-48.

A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    

Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae., Zito F., Dev Growth Differ. September 1, 2015; 57 (7): 507-14.

Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          

Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       

Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.

A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          

Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS., Development. January 1, 2015; 142 (1): 207-17.

Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              

bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            

Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          

Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.

Pattern and process during sea urchin gut morphogenesis: the regulatory landscape., Annunziata R., Genesis. March 1, 2014; 52 (3): 251-68.

Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo., Kalampoki LG., PLoS One. January 1, 2014; 9 (11): e109274.                    

Expression of wnt and frizzled genes during early sea star development., McCauley BS., Gene Expr Patterns. December 1, 2013; 13 (8): 437-44.

Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm., McIntyre DC., Development. December 1, 2013; 140 (24): 4881-9.

Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        

A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            

A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the echinoid Clypeaster rosaceus., Zigler KS., Biol Bull. August 1, 2013; 224 (3): 192-9.

Intact cluster and chordate-like expression of ParaHox genes in a sea star., Annunziata R., BMC Biol. June 27, 2013; 11 68.            

Tissue-specificity and phylogenetics of Pl-MT mRNA during Paracentrotus lividus embryogenesis., Russo R., Gene. May 1, 2013; 519 (2): 305-10.

FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii., Green SA., Development. March 1, 2013; 140 (5): 1024-33.

Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans., Arenas-Mena C., Int J Dev Biol. January 1, 2013; 57 (1): 73-83.

Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          

Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling., Wei Z., Development. May 1, 2012; 139 (9): 1662-9.

A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.

Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos., Sethi AJ., Science. February 3, 2012; 335 (6068): 590-3.

Page(s): 1 2 3 4 5 Next