Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (129) Expression Attributions Wiki
ECB-ANAT-164

Papers associated with vegetal tier 2

Limit to papers also referencing gene:
Results 1 - 50 of 129 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

A single cell RNA sequencing resource for early sea urchin development., Foster S., Development. September 11, 2020; 147 (17):


pmar1/phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms., Yamazaki A., Development. February 26, 2020; 147 (4):


Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition., Wessel GM., Sci Rep. February 6, 2020; 10 (1): 1973.                  


How Does the Regulatory Genome Work?, Istrail S., J Comput Biol. July 1, 2019; 26 (7): 685-695.


Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids., Erkenbrack EM., Development. December 18, 2018; 145 (24):


Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo., Sepúlveda-Ramírez SP., Dev Biol. May 15, 2018; 437 (2): 140-151.            


New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus., Martik ML., Mech Dev. December 1, 2017; 148 3-10.


Assessing regulatory information in developmental gene regulatory networks., Peter IS., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5862-5869.


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.            


Identification of morphogenetic capability limitations via a single starfish embryo/larva reconstruction method., Kawai N., Dev Growth Differ. April 1, 2017; 59 (3): 129-140.


Role of Mad2 expression during the early development of the sea urchin., Bronchain O., Int J Dev Biol. January 1, 2017; 61 (6-7): 451-457.


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N., Dev Biol. June 1, 2015; 402 (1): 127-41.


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS., Development. January 1, 2015; 142 (1): 207-17.


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Regulatory logic and pattern formation in the early sea urchin embryo., Sun M., J Theor Biol. December 21, 2014; 363 80-92.


Delayed transition to new cell fates during cellular reprogramming., Cheng X., Dev Biol. July 15, 2014; 391 (2): 147-57.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Brief notes on the meaning of a genomic control system for animal embryogenesis., Davidson E., Perspect Biol Med. January 1, 2014; 57 (1): 78-86.


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the echinoid Clypeaster rosaceus., Zigler KS., Biol Bull. August 1, 2013; 224 (3): 192-9.


Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning., Yankura KA., Proc Natl Acad Sci U S A. May 21, 2013; 110 (21): 8591-6.


FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii., Green SA., Development. March 1, 2013; 140 (5): 1024-33.


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ., PLoS One. January 1, 2013; 8 (11): e80693.          


Genetics of gene expression responses to temperature stress in a sea urchin gene network., Runcie DE., Mol Ecol. September 1, 2012; 21 (18): 4547-62.


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A., Dev Biol. April 15, 2012; 364 (2): 259-67.


Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos., Sethi AJ., Science. February 3, 2012; 335 (6068): 590-3.


Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis., Lhomond G., Development. February 1, 2012; 139 (4): 816-25.


Synthetic in vivo validation of gene network circuitry., Damle SS., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Wnt6 activates endoderm in the sea urchin gene regulatory network., Croce J., Development. August 1, 2011; 138 (15): 3297-306.


A gene regulatory network controlling the embryonic specification of endoderm., Peter IS., Nature. May 29, 2011; 474 (7353): 635-9.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK., Development. March 1, 2011; 138 (5): 937-45.


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


Information processing at the foxa node of the sea urchin endomesoderm specification network., de-Leon SB., Proc Natl Acad Sci U S A. June 1, 2010; 107 (22): 10103-8.


The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage., Peter IS., Dev Biol. April 15, 2010; 340 (2): 188-99.


The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development., Stamateris RE., Gene Expr Patterns. January 1, 2010; 10 (1): 60-4.


Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo., Croce JC., Development. January 1, 2010; 137 (1): 83-91.


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Characterization and expression of a sea star otx ortholog (Protxβ1/2) in the larva of Patiriella regularis., Elia L., Gene Expr Patterns. January 1, 2010; 10 (7-8): 323-7.

Page(s): 1 2 3 Next