Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (141) Expression Attributions Wiki
ECB-ANAT-175

Papers associated with dorsal ectoderm

Limit to papers also referencing gene:
Results 1 - 50 of 141 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I., Dev Biol. July 1, 2021; 475 131-144.


SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning., Anishchenko E., Evodevo. January 22, 2018; 9 5.          


Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids., Erkenbrack EM., Dev Genes Evol. January 1, 2018; 228 (1): 1-11.


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo., Barsi JC., Dev Biol. January 1, 2016; 409 (1): 310-318.


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus., Katow H., Front Zool. January 1, 2016; 13 27.                  


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC., Development. March 1, 2015; 142 (5): 953-61.


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Molecular characterization of the apical organ of the anthozoan Nematostella vectensis., Sinigaglia C., Dev Biol. February 1, 2015; 398 (1): 120-33.                        


A computational model for BMP movement in sea urchin embryos., van Heijster P., J Theor Biol. December 21, 2014; 363 277-89.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo., Kalampoki LG., PLoS One. January 1, 2014; 9 (11): e109274.                    


Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown., Ben-Tabou de-Leon S., Dev Biol. February 1, 2013; 374 (1): 245-54.


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo., Li E., Dev Biol. September 15, 2012; 369 (2): 377-85.


Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms)., Röttinger E., Dev Biol. June 1, 2011; 354 (1): 173-90.


The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network., Chen JH., Dev Dyn. January 1, 2011; 240 (1): 250-60.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo., Yaguchi S., Dev Biol. November 1, 2010; 347 (1): 71-81.


Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration., Ooka S., Dev Growth Differ. February 1, 2010; 52 (2): 195-207.


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation., Agca C., Dev Dyn. July 1, 2009; 238 (7): 1777-87.


A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo., Su YH., Dev Biol. May 15, 2009; 329 (2): 410-21.


Neural development of the brittlestar Amphiura filiformis., Dupont S., Dev Genes Evol. March 1, 2009; 219 (3): 159-66.


cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo., Cavalieri V., Dev Biol. September 15, 2008; 321 (2): 455-69.


Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation., Duboc V., Dev Biol. August 1, 2008; 320 (1): 49-59.


Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension., Katow H., Int J Dev Biol. January 1, 2008; 52 (8): 1077-88.


Compositional genome contexts affect gene expression control in sea urchin embryo., Mahmud AA., PLoS One. January 1, 2008; 3 (12): e4025.      


SpGataE, a Strongylocentrotus purpuratus ortholog of mammalian Gata4/5/6: protein expression, interaction with putative target gene spec2a, and identification of friend of Gata factor SpFog1., Kiyama T., Dev Genes Evol. September 1, 2007; 217 (9): 651-63.


Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo., Yaguchi S., Dev Biol. February 15, 2007; 302 (2): 494-503.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Larval ectoderm, organizational homology, and the origins of evolutionary novelty., Love AC., J Exp Zool B Mol Dev Evol. January 15, 2006; 306 (1): 18-34.


Structure, expression, and transcriptional regulation of the Strongylocentrotus franciscanus spec gene family encoding intracellular calcium-binding proteins., Villinski JT., Dev Genes Evol. August 1, 2005; 215 (8): 410-22.


Strongylocentrotus purpuratus transcription factor GATA-E binds to and represses transcription at an Otx-Goosecoid cis-regulatory element within the aboral ectoderm-specific spec2a enhancer., Kiyama T., Dev Biol. April 15, 2005; 280 (2): 436-47.


Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene., Dayal S., Dev Biol. September 15, 2004; 273 (2): 436-53.


Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene., Coffman JA., BMC Biol. May 7, 2004; 2 6.      


Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo., Duboc V., Dev Cell. March 1, 2004; 6 (3): 397-410.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens., Morris VB., Int J Dev Biol. February 1, 2004; 48 (1): 17-22.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G., Dev Biol. September 1, 2003; 261 (1): 55-81.


Utilization of a particle gun DNA introduction system for the analysis of cis-regulatory elements controlling the spatial expression pattern of the arylsulfatase gene (HpArs) in sea urchin embryos., Kurita M., Dev Genes Evol. February 1, 2003; 213 (1): 44-9.

Page(s): 1 2 3 Next