Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (49) Expression Attributions Wiki
ECB-ANAT-120

Papers associated with mesomere

Limit to papers also referencing gene:
Results 1 - 49 of 49 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Action at a distance during cytokinesis., von Dassow G., J Cell Biol. December 14, 2009; 187 (6): 831-45.                


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


Regulative potential to form an amniotic cavity in mesomeres of a direct developing echinoid, Peronella japonica., Kitazawa C., Zygote. January 1, 2000; 8 Suppl 1 S79.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.


A presumptive developmental role for a sea urchin cyclin B splice variant., Lozano JC., J Cell Biol. January 26, 1998; 140 (2): 283-93.                        


Polarized distribution of L-type calcium channels in early sea urchin embryos., Dale B., Am J Physiol. September 1, 1997; 273 (3 Pt 1): C822-5.


The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo., Logan CY., Development. June 1, 1997; 124 (11): 2213-23.


Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo., Wikramanayake AH., Development. January 1, 1997; 124 (1): 13-20.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species., Wikramanayake AH., Development. May 1, 1995; 121 (5): 1497-505.


Spatial distribution of two maternal messengers in Paracentrotus lividus during oogenesis and embryogenesis., Di Carlo M., Proc Natl Acad Sci U S A. June 7, 1994; 91 (12): 5622-6.


Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo., Di Bernardo M., Genetica. January 1, 1994; 94 (2-3): 141-50.


Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres., Nasir A., Anal Biochem. May 15, 1992; 203 (1): 22-6.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


Interactions of different vegetal cells with mesomeres during early stages of sea urchin development., Khaner O., Development. July 1, 1991; 112 (3): 881-90.


The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division., Summers RG., J Electron Microsc Tech. May 1, 1991; 18 (1): 24-30.


The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres., Khaner O., Development. July 1, 1990; 109 (3): 625-34.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos., Henry JJ., Dev Biol. November 1, 1989; 136 (1): 140-53.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


Histone modifications accompanying the onset of developmental commitment., Chambers SA., Dev Biol. December 1, 1987; 124 (2): 523-31.


Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions., Schroeder TE., Dev Biol. November 1, 1987; 124 (1): 9-22.


Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos., De Simone DW., Exp Cell Res. January 1, 1985; 156 (1): 7-14.


Diffusible factors are responsible for differences in nuclease sensitivity among chromatins originating from different cell types., Chambers SA., Exp Cell Res. September 1, 1984; 154 (1): 213-23.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Changes in cell surface charges during differentiation of isolated micromeres and mesomeres from sea urchin embryos., Sano K., Dev Biol. October 15, 1977; 60 (2): 404-15.


Distribution of concanavalin A receptor sites on specific populations of embryonic cells., Roberson M., Science. August 22, 1975; 189 (4203): 639-40.


[Morphological and biochemical characterization of the developmental stages of fertilized eggs inSphaerechinus granularis lam : I. Rearing, Morphology and determination of stages]., Müller WE., Wilhelm Roux Arch Entwickl Mech Org. June 1, 1971; 167 (2): 99-117.


Cytological and morphological studies of the action of lithium on the development of the sea urchin embryo., Hagström BE., Wilhelm Roux Arch Entwickl Mech Org. March 1, 1967; 158 (1): 1-12.


Protein synthesis in micromeres of the sea urchin egg., Spiegel M., Science. March 11, 1966; 151 (3715): 1233-4.

Page(s): 1