Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (37) Expression Attributions Wiki

Papers associated with apical ganglion

Limit to papers also referencing gene:
Results 1 - 37 of 37 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I., Dev Biol. July 1, 2021; 475 131-144.

Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea., Mercurio S., J Comp Neurol. April 15, 2019; 527 (6): 1127-1139.

Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              

Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo., Slota LA., Dev Biol. March 15, 2018; 435 (2): 138-149.

Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            

New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus., Perillo M., Front Endocrinol (Lausanne). January 1, 2018; 9 650.            

Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens., Mayorova TD., Front Neurosci. December 1, 2016; 10 553.                  

A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos., Cheatle Jarvela AM., Development. November 15, 2016; 143 (22): 4214-4223.

A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva., Perillo M., BMC Evol Biol. May 26, 2016; 16 (1): 117.              

Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms., Garner S., Development. January 15, 2016; 143 (2): 286-97.

Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       

A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          

Molecular characterization of the apical organ of the anthozoan Nematostella vectensis., Sinigaglia C., Dev Biol. February 1, 2015; 398 (1): 120-33.                        

Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              

Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              

Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD., Dev Biol. May 1, 2013; 377 (1): 236-44.

Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea)., Sutherby J., BMC Dev Biol. April 27, 2012; 12 14.                

Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    

The neurotoxic effects of monocrotophos on the formation of the serotonergic nervous system and swimming activity in the larvae of the sea urchin Hemicentrotus pulcherrimus., Yao D., Environ Toxicol Pharmacol. September 1, 2010; 30 (2): 181-7.

Evolutionary modification of T-brain (tbr) expression patterns in sand dollar., Minemura K., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.

Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry., Katow H., Dev Genes Evol. February 1, 2009; 219 (2): 67-77.

Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension., Katow H., Int J Dev Biol. January 1, 2008; 52 (8): 1077-88.

Ontogeny of the holothurian larval nervous system: evolution of larval forms., Bishop CD., Dev Genes Evol. August 1, 2007; 217 (8): 585-92.

Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel., Katow H., J Exp Biol. February 1, 2007; 210 (Pt 3): 403-12.

Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF., Evol Dev. January 1, 2007; 9 (1): 10-24.

A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                

Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria., Byrne M., Evol Dev. January 1, 2007; 9 (5): 432-45.

The larval apical organ in the holothuroid Chiridota gigas (Apodida): inferences on evolution of the Ambulacrarian larval nervous system., Byrne M., Biol Bull. October 1, 2006; 211 (2): 95-100.

Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S., Development. June 1, 2006; 133 (12): 2337-46.

Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo., Takacs CM., Dev Biol. May 1, 2004; 269 (1): 152-64.

Divergent patterns of neural development in larval echinoids and asteroids., Nakajima Y., Evol Dev. January 1, 2004; 6 (2): 95-104.

On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo., Poustka AJ., Evol Dev. January 1, 2004; 6 (4): 227-36.

Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior., Yaguchi S., J Comp Neurol. November 10, 2003; 466 (2): 219-29.

Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris., Beer AJ., Biol Bull. June 1, 2001; 200 (3): 268-80.

Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.

Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos., Yaguchi S., Dev Growth Differ. October 1, 2000; 42 (5): 479-88.

Fine structure of the doliolaria larva of the feather star Florometra serratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system., Chia FS., J Morphol. August 1, 1986; 189 (2): 99-120.

Page(s): 1