Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (79) Expression Attributions Wiki
ECB-ANAT-49

Papers associated with vegetal pole

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E., Development. March 1, 2004; 131 (5): 1075-87.


Mechanisms of calcium elevation in the micromeres of sea urchin embryos., Yazaki I., Biol Cell. March 1, 2004; 96 (2): 153-67.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Expression of AmKrox, a starfish ortholog of a sea urchin transcription factor essential for endomesodermal specification., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 423-6.


Nuclear localization of beta-catenin in vegetal pole cells during early embryogenesis of the starfish Asterina pectinifera., Miyawaki K., Dev Growth Differ. April 1, 2003; 45 (2): 121-8.


Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes., Lénárt P., J Cell Biol. March 31, 2003; 160 (7): 1055-68.                


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis., Kominami T., Dev Growth Differ. December 1, 2001; 43 (6): 699-707.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR., Development. December 1, 2000; 127 (23): 5113-22.


Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole., Yazaki I., Dev Biol. August 15, 1999; 212 (2): 503-10.


Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN., Wardle FC., Dev Biol. February 1, 1999; 206 (1): 63-72.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo., Emily-Fenouil F., Development. July 1, 1998; 125 (13): 2489-98.


Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation., Sherwood DR., Development. September 1, 1997; 124 (17): 3363-74.


Completely Direct Development of Abatus cordatus, a Brooding Schizasterid (Echinodermata: Echinoidea) from Kerguelen, With Description of Perigastrulation, a Hypothetical New Mode of Gastrulation., Schatt P., Biol Bull. February 1, 1996; 190 (1): 24-44.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK., Dev Genet. January 1, 1996; 19 (3): 231-7.


Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo., Malinda KM., Dev Biol. December 1, 1995; 172 (2): 552-66.


Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo., Wei Z., Dev Biol. September 1, 1995; 171 (1): 195-211.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A., Science. February 19, 1993; 259 (5098): 1134-8.


Nuclear migration and spindle formation in the fourth cleavage of sea urchin eggs under the influence of inhibitors., Czihak G., Cell Struct Funct. April 1, 1992; 17 (2): 145-50.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT., Development. March 1, 1990; 108 (3): 403-10.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres., Hurley DL., Development. July 1, 1989; 106 (3): 567-79.


The origin of skeleton forming cells in the sea urchin embryo., Urben S., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Distribution and redistribution of pigment granules in the development of sea urchin embryos., Tanaka Y., Wilehm Roux Arch Dev Biol. September 1, 1981; 190 (5): 267-273.

???pagination.result.page??? ???pagination.result.prev??? 1 2