Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (79) Expression Attributions Wiki
ECB-ANAT-49

Papers associated with vegetal pole

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  


Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron., Hardin J., Mol Biol Cell. July 22, 2019; 30 (16): 1911-1919.          


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Visualizing egg and embryonic polarity., Smith LT., Methods Cell Biol. January 1, 2019; 150 251-268.


Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions., Klughammer N., PLoS Comput Biol. November 15, 2018; 14 (11): e1006588.                


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes., Bun P., Elife. January 19, 2018; 7                                 


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          


A cdk1 gradient guides surface contraction waves in oocytes., Bischof J., Nat Commun. October 11, 2017; 8 (1): 849.        


A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins., Erkenbrack EM., J Exp Zool B Mol Dev Evol. July 1, 2017; 328 (5): 423-432.


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):                 


Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium., Bement WM., Nat Cell Biol. November 1, 2015; 17 (11): 1471-83.              


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.                    


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A., Front Zool. May 9, 2014; 11 50.                  


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ., PLoS One. January 1, 2013; 8 (11): e80693.          


The tension at the top of the animal pole decreases during meiotic cell division., Satoh SK., PLoS One. January 1, 2013; 8 (11): e79389.                


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


A mathematical model of cleavage., Akiyama M., J Theor Biol. May 7, 2010; 264 (1): 84-94.


A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos., McCauley BS., Dev Biol. April 15, 2010; 340 (2): 200-8.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Embryonic pattern formation without morphogens., Bolouri H., Bioessays. May 1, 2008; 30 (5): 412-7.


Wnt signaling in the early sea urchin embryo., Kumburegama S., Methods Mol Biol. January 1, 2008; 469 187-99.


Compositional genome contexts affect gene expression control in sea urchin embryo., Mahmud AA., PLoS One. January 1, 2008; 3 (12): e4025.      


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


Nodal signaling and the evolution of deuterostome gastrulation., Chea HK., Dev Dyn. October 1, 2005; 234 (2): 269-78.


Characterization and expression of two matrix metalloproteinase genes during sea urchin development., Ingersoll EP., Gene Expr Patterns. August 1, 2005; 5 (6): 727-32.


Selection of initial conditions for recursive production of multicellular organisms., Yoshida H., J Theor Biol. April 21, 2005; 233 (4): 501-14.


Role of microtubules and centrosomes in the eccentric relocation of the germinal vesicle upon meiosis reinitiation in sea-cucumber oocytes., Miyazaki A., Dev Biol. April 1, 2005; 280 (1): 237-47.


Expression of AmHNF6, a sea star orthologue of a transcription factor with multiple distinct roles in sea urchin development., Otim O., Gene Expr Patterns. February 1, 2005; 5 (3): 381-6.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Unequal cell division regulated by the contents of germinal vesicles., Matsuura RK., Dev Biol. September 1, 2004; 273 (1): 76-86.

???pagination.result.page??? 1 2 ???pagination.result.next???