Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (59) Expression Attributions Wiki
ECB-ANAT-396

Papers associated with tooth

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The first mitochondrial genome of the model echinoid Lytechinus variegatus and insights into Odontophoran phylogenetics., Bronstein O., Genomics. July 1, 2019; 111 (4): 710-718.


The unique biomineralization transcriptome and proteome of Lytechinus variegatus teeth., Alvares K., Connect Tissue Res. December 1, 2018; 59 (sup1): 20-29.


The peristomial plates of ophiuroids (Echinodermata: Ophiuroidea) highlight an incongruence between morphology and proposed phylogenies., Wilkie IC., PLoS One. August 1, 2018; 13 (8): e0202046.                    


Growth of second stage mineral in Lytechinus variegatus., Stock SR., Connect Tissue Res. July 1, 2018; 59 (4): 345-355.


Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA., Thuy B., Sci Rep. June 25, 2018; 8 (1): 9617.        


Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS., Bello LT., Appl Spectrosc. April 1, 2017; 71 (4): 659-669.


Four new species of the millipede genus Eutrichodesmus Silvestri, 1910 from Laos, including two with reduced ozopores (Diplopoda, Polydesmida, Haplodesmidae)., Liu W., Zookeys. March 8, 2017; (660): 43-65.                          


Sea urchin growth dynamics at microstructural length scale revealed by Mn-labeling and cathodoluminescence imaging., Gorzelak P., Front Zool. February 23, 2017; 14 42.                  


Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish., Cramer KL., Nat Commun. January 23, 2017; 8 14160.        


Non-destructive morphological observations of the fleshy brittle star, Asteronyx loveni using micro-computed tomography (Echinodermata, Ophiuroidea, Euryalida)., Okanishi M., Zookeys. January 1, 2017; (663): 1-19.            


A new species of Pentamera Ayres, 1852 from the Brazilian coast (Holothuroidea, Dendrochirotida, Phyllophoridae)., Prata J., Zookeys. November 21, 2016; (634): 1-14.      


Borniopsis mortoni sp. n. (Heterodonta, Galeommatoidea, Galeommatidaesensu lato), a new bivalve commensal with a synaptid sea cucumber from Japan., Goto R., Zookeys. September 7, 2016; (615): 33-45.        


Membrane-plate transition in leaves as an influence on dietary selectivity and tooth form., Talebi MG., J Hum Evol. September 1, 2016; 98 18-26.


Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials., Yan Z., Adv Funct Mater. April 25, 2016; 26 (16): 2629-2639.


A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws., Frank MB., J Vis Exp. April 24, 2016; (110):


Trends in the prevalence of erosive tooth wear in Brazilian preschool children., Murakami C., Int J Paediatr Dent. January 1, 2016; 26 (1): 60-5.


SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization., Mao Y., Ann Anat. January 1, 2016; 203 38-46.


Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into "osteocyte-like" cells., Alvares K., J Exp Zool B Mol Dev Evol. January 1, 2016; 326 (1): 38-46.


Paedomorphosis as an Evolutionary Driving Force: Insights from Deep-Sea Brittle Stars., Stöhr S., PLoS One. January 1, 2016; 11 (11): e0164562.                


Large area sub-micron chemical imaging of magnesium in sea urchin teeth., Masic A., J Struct Biol. March 1, 2015; 189 (3): 269-75.


Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein., Wilkie IC., PLoS One. January 1, 2015; 10 (3): e0120339.                


Tailored order: the mesocrystalline nature of sea urchin teeth., Goetz AJ., Acta Biomater. September 1, 2014; 10 (9): 3885-98.


Deep water echinoid-associated pontoniine shrimp "Periclimenes hertwigi Balss, 1913" species group (Crustacea: Decapoda: Caridea: Palaemonidae): species review, description of a new genus and species from Philippines., Marin I., Zootaxa. July 11, 2014; 3835 (3): 301-24.


Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties., Stock SR., Connect Tissue Res. January 1, 2014; 55 (1): 41-51.


Sea urchin tooth mineralization: calcite present early in the aboral plumula., Stock SR., J Struct Biol. November 1, 2012; 180 (2): 280-9.


Global diversity of brittle stars (Echinodermata: Ophiuroidea)., Stöhr S., PLoS One. January 1, 2012; 7 (3): e31940.              


On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement., Veis A., Cells Tissues Organs. January 1, 2011; 194 (2-4): 131-7.


Molecular aspects of biomineralization of the echinoderm endoskeleton., Gilbert PU., Prog Mol Subcell Biol. January 1, 2011; 52 199-223.


Opportunities and challenges for digital morphology., Ziegler A., Biol Direct. July 6, 2010; 5 45.      


Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix., Mann K., Proteome Sci. June 17, 2010; 8 33.      


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin., Mann K., Proteome Sci. February 8, 2010; 8 (1): 6.            


SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus., Killian CE., Gene Expr Patterns. January 1, 2010; 10 (2-3): 135-9.


Mechanism of calcite co-orientation in the sea urchin tooth., Killian CE., J Am Chem Soc. December 30, 2009; 131 (51): 18404-9.


Echinoderm phosphorylated matrix proteins UTMP16 and UTMP19 have different functions in sea urchin tooth mineralization., Alvares K., J Biol Chem. September 18, 2009; 284 (38): 26149-60.                    


Review of the symbiotic genus Haplosyllides (Polychaeta: Syllidae), with a description of a new species., Martin D., Zoolog Sci. September 1, 2009; 26 (9): 646-55.


Characterization of two distinctly different mineral-related proteins from the teeth of the Camarodont sea urchin Lytechinus variegatus: Specificity of function with relation to mineralization., Veis A., Front Mater Sci China. June 1, 2009; 3 (2): 163-168.


The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution., Ma Y., Proc Natl Acad Sci U S A. April 14, 2009; 106 (15): 6048-53.


In-depth, high-accuracy proteomics of sea urchin tooth organic matrix., Mann K., Proteome Sci. December 9, 2008; 6 33.      


Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging., Ziegler A., BMC Biol. July 23, 2008; 6 33.            


The proteome of the developing tooth of the sea urchin, Lytechinus variegatus: mortalin is a constituent of the developing cell syncytium., Alvares K., J Exp Zool B Mol Dev Evol. July 15, 2007; 308 (4): 357-70.


Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus., Robach JS., J Struct Biol. July 1, 2005; 151 (1): 18-29.


Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT)., Stock SR., J Struct Biol. December 1, 2003; 144 (3): 282-300.


Multiple microscopy modalities applied to a sea urchin tooth fragment., Stock SR., J Synchrotron Radiat. September 1, 2003; 10 (Pt 5): 393-7.


X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus., Stock SR., J Struct Biol. January 1, 2003; 141 (1): 9-21.


Mineral-related proteins of sea urchin teeth: Lytechinus variegatus., Veis A., Microsc Res Tech. December 1, 2002; 59 (5): 342-51.


X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth., Stock SR., J Struct Biol. July 1, 2002; 139 (1): 1-12.


Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution., Ameye L., J Struct Biol. August 1, 2000; 131 (2): 116-25.


Ultrastructural localization of proteins involved in sea urchin biomineralization., Ameye L., J Histochem Cytochem. September 1, 1999; 47 (9): 1189-200.


Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function., Wang RZ., Philos Trans R Soc Lond B Biol Sci. April 29, 1997; 352 (1352): 469-80.

???pagination.result.page??? 1 2 ???pagination.result.next???