Results 1 - 50 of 141 results
The evolution of a new cell type was associated with competition for a signaling ligand. , Ettensohn CA ., PLoS Biol. September 18, 2019; 17 (9): e3000460.
Culture of and experiments with sea urchin embryo primary mesenchyme cells. , Moreno B., Methods Cell Biol. January 1, 2019; 150 293-330.
Spatially mapping gene expression in sea urchin primary mesenchyme cells. , Zuch DT., Methods Cell Biol. January 1, 2019; 151 433-442.
Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. , Sepúlveda-Ramírez SP., Dev Biol. May 15, 2018; 437 (2): 140-151.
A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos. , Hu MY ., Elife. May 1, 2018; 7
Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. , Shashikant T., BMC Genomics. March 20, 2018; 19 (1): 206.
Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK ( ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus). , Taylor E., Front Endocrinol (Lausanne). January 1, 2018; 9 439.
Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms. , Khor JM., Elife. November 20, 2017; 6
Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis. , Killian CE ., Exp Cell Res. October 1, 2017; 359 (1): 205-214.
Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles. , Cappello T., Comp Biochem Physiol C Toxicol Pharmacol. September 1, 2017; 199 20-27.
Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos. , Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.
KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo. , Ettensohn CA ., Dev Biol. January 15, 2017; 421 (2): 258-270.
The small GTPase Arf6 regulates sea urchin morphogenesis. , Stepicheva NA., Differentiation. January 1, 2017; 95 31-43.
Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. , Karakostis K., Mar Biotechnol (NY). June 1, 2016; 18 (3): 384-95.
Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo. , Piacentino ML., Dev Biol. April 1, 2016; 412 (1): 44-56.
RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins. , Piacentino ML., Development. February 15, 2016; 143 (4): 703-14.
microRNA-31 modulates skeletal patterning in the sea urchin embryo. , Stepicheva NA., Development. November 1, 2015; 142 (21): 3769-80.
H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos. , Schatzberg D., Dev Biol. October 15, 2015; 406 (2): 259-70.
A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms. , Lapraz F., Nat Commun. October 1, 2015; 6 8434.
Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae. , Zito F., Dev Growth Differ. September 1, 2015; 57 (7): 507-14.
Ca²⁺ influx-linked protein kinase C activity regulates the β- catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos. , Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.
Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos. , Piacentino ML., Development. March 1, 2015; 142 (5): 943-52.
Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. , Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.
Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. , Cavalieri V., Elife. December 2, 2014; 3 e04664.
Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. , Sun Z., Gene Expr Patterns. November 1, 2014; 16 (2): 93-103.
Specification to biomineralization: following a single cell type as it constructs a skeleton. , Lyons DC ., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.
Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. , Yamazaki A., Development. July 1, 2014; 141 (13): 2669-79.
Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. , Rafiq K., Development. February 1, 2014; 141 (4): 950-61.
Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae. , Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.
Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. , Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.
Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. , Adomako-Ankomah A., Development. October 1, 2013; 140 (20): 4214-25.
Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. , Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.
Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro. , Knapp RT., J Am Chem Soc. October 31, 2012; 134 (43): 17908-11.
Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae. , Shiomi K., Dev Genes Evol. September 1, 2012; 222 (5): 269-78.
Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions. , Hammond LM., J Exp Biol. July 15, 2012; 215 (Pt 14): 2445-54.
Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. , Costa C., Dev Genes Evol. July 1, 2012; 222 (4): 245-51.
The genomic regulatory control of skeletal morphogenesis in the sea urchin. , Rafiq K., Development. February 1, 2012; 139 (3): 579-90.
Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. , Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.
Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. , Adams DK., Nat Commun. December 20, 2011; 2 592.
Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo. , Cavalieri V., Development. October 1, 2011; 138 (19): 4279-90.
Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. , Sharma T., Development. June 1, 2011; 138 (12): 2581-90.
The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. , Rho HK., Development. March 1, 2011; 138 (5): 937-45.
Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. , Ochiai H., Genes Cells. August 1, 2010; 15 (8): 875-85.
Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells. , Yajima M ., Zoolog Sci. August 1, 2010; 27 (8): 638-46.
Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). , Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.
SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus. , Killian CE ., Gene Expr Patterns. January 1, 2010; 10 (2-3): 135-9.
Role of the nanos homolog during sea urchin development. , Fujii T., Dev Dyn. October 1, 2009; 238 (10): 2511-21.
Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network. , Kühn C., BMC Syst Biol. August 23, 2009; 3 83.
Gene regulatory network interactions in sea urchin endomesoderm induction. , Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.
Structure-function correlation of micro1 for micromere specification in sea urchin embryos. , Yamazaki A., Mech Dev. January 1, 2009; 126 (8-9): 611-23.