Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (397) Expression Attributions Wiki
ECB-ANAT-14

Papers associated with digestive system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8

Sort Newest To Oldest Sort Oldest To Newest

Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


RAPID EVOLUTION OF GASTRULATION MECHANISMS IN A SEA URCHIN WITH LECITHOTROPHIC LARVAE., Wray GA., Evolution. December 1, 1991; 45 (8): 1741-1750.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Choanocyte-like cells in the digestive system of the starfish Marthasterias glacialis (Echinodermata)., Martinez A., J Morphol. May 1, 1991; 208 (2): 215-225.


Structure, spatial, and temporal expression of two sea urchin metallothionein genes, SpMTB1 and SpMTA., Nemer M., J Biol Chem. April 5, 1991; 266 (10): 6586-93.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J., Dev Biol. November 1, 1990; 142 (1): 86-102.


A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos., Coffman JA., Dev Biol. July 1, 1990; 140 (1): 93-104.


Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation., Hardin J., Dev Biol. December 1, 1989; 136 (2): 430-45.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Ontogeny and characterization of mesenchyme antigens of the sea urchin embryo., Tamboline CR., Dev Biol. November 1, 1989; 136 (1): 75-86.


Three Strongylocentrotus purpuratus actin genes show correct cell-specific expression in hybrid embryos of S. purpuratus and Lytechinus pictus., Nisson PE., Development. February 1, 1989; 105 (2): 407-13.


The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation., Hardin J., Development. June 1, 1988; 103 (2): 317-24.


Ophiuroid Skeleton Ontogeny Reveals Homologies Among Skeletal Plates of Adults: A Study of Amphiura filiformis, Amphiura stimpsonii and Ophiophragmus filograneus (Echinodermata)., Hendler G., Biol Bull. February 1, 1988; 174 (1): 20-29.


[Effect of diesel fuel hydrocarbons and cadmium on the development of sea urchin progeny]., Vashchenko MA., Ontogenez. January 1, 1988; 19 (1): 82-8.


Determination and morphogenesis in the sea urchin embryo., Wilt FH., Development. August 1, 1987; 100 (4): 559-76.


Archenteron elongation in the sea urchin embryo is a microtubule-independent process., Hardin JD., Dev Biol. May 1, 1987; 121 (1): 253-62.


Chiropteran enamel structure., Lester KS., Scanning Microsc. March 1, 1987; 1 (1): 421-36.


Cell behaviour during active cell rearrangement: evidence and speculations., Keller R., J Cell Sci Suppl. January 1, 1987; 8 369-93.


Matrix proteins of the teeth of the sea urchin Lytechinus variegatus., Veis DJ., J Exp Zool. October 1, 1986; 240 (1): 35-46.


What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae?, Yamanaka H., J Embryol Exp Morphol. June 1, 1986; 94 61-71.


Ultrastructural aspects of mouth formation in the starfish Pisaster ochraceus., Abed M., J Morphol. May 1, 1986; 188 (2): 239-250.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Allocation of mesendodermal cells during early embryogenesis in the starfish, Asterina pectinifera., Kominami T., J Embryol Exp Morphol. December 1, 1984; 84 177-90.


The structure of the larval nervous system of Pisaster ochraceus (Echinodermata: Asteroidea)., Burke RD., J Morphol. October 1, 1983; 178 (1): 23-35.


Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula)., Akasaka K., Exp Cell Res. June 1, 1983; 146 (1): 177-85.


The role of the basal lamina in mouth formation in the embryo of the starfish Pisaster ochraceus., Crawford B., J Morphol. May 1, 1983; 176 (2): 235-246.


Inhibition of archenteron formation by the inhibitors of prolyl hydroxylase in sea urchin embryos., Mizoguchi H., Cell Differ. April 1, 1983; 12 (4): 225-31.


Glycoprotein synthesis and embryonic development., Lennarz WJ., CRC Crit Rev Biochem. January 1, 1983; 14 (4): 257-72.


Electron microscopy of extracellular materials during the development of a sea star, Patiria miniata (Echinodermata: Asteroidea)., Cameron RA., Cell Tissue Res. January 1, 1983; 234 (1): 193-200.


Degeneration of archenteron in sea urchin embryos caused by alpha,alpha''-dipyridyl., Mizoguchi H., Differentiation. January 1, 1983; 25 (2): 106-12.


Archenteron formation induced by ascorbate and alpha-ketoglutarate in sea urchin embryos kept in SO2- 4 -free artificial seawater., Mizoguchi H., Dev Biol. September 1, 1982; 93 (1): 119-25.


Archenteron cells are responsible for the increase in ribosomal RNA synthesis in sea urchin gastrulae., Roccheri MC., Cell Biol Int Rep. December 1, 1979; 3 (9): 733-7.


Coelomic pouch formation in the starfish Pisaster ochraceus (Echinodermata: Asteroidea)., Crawford BJ., J Morphol. July 1, 1978; 157 (1): 99-119.


STUDIES ON FUNCTIONAL MORPHOLOGY IN THE DIGESTIVE SYSTEM OF OREASTER RETICULATUS (L.) (ASTEROIDEA)., Anderson JM., Biol Bull. February 1, 1978; 154 (1): 1-14.


Action of crude and fractioned homogenates of the midgut gland of the sea hare Aplysia brasiliana Rang, 1828 on some cholinoceptive structures., de Freitas JC., Comp Biochem Physiol C. January 1, 1977; 56 (1): 57-61.


The fine structure of the embryo during the gastrula stage of Comanthus japonica (Echinodermata: Crinoidea)., Holland ND., Tissue Cell. January 1, 1976; 8 (3): 491-510.


The form of the globiferous pedicellarial ossicles of the regular echinoid, Psammechinus miliaris Gmelin., Oldfield SC., Tissue Cell. January 1, 1976; 8 (1): 93-9.


3H-amino acid uptake and incorporation in sea urchin gastrulae and exogastrulae: an autoradiographic study., Karp GC., J Exp Zool. December 1, 1975; 194 (3): 535-45.


[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]., Kocher-Becker U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.


Cholinesterase in embryonic development., Drews U., Prog Histochem Cytochem. January 1, 1975; 7 (3): 1-52.


Ultrastructure and growth of the sea urchin tooth., Kniprath E., Calcif Tissue Res. March 29, 1974; 14 (3): 211-28.


Arylsulphatases and beta-glucuronidase in the digestive system of some echinoderms., Cornet D., Comp Biochem Physiol B. January 15, 1974; 47 (1): 45-52.


Reduction of the archenteron in sea urchin larvae without typical animalization., Hörstadius S., Exp Cell Res. May 1, 1972; 72 (1): 140-4.


A light and electron microscopic investigation of the digestive system of the Ophiuroid ophiuroiderma panamensis (Brittle Star)., Schechter J., J Morphol. April 1, 1968; 124 (4): 451-81.


AN AUTORADIOGRAPHIC INVESTIGATION OF TOOTH RENEWAL IN THE PURPLE SEA URCHIN (STRONGYLOCENTROTUS PURPURATUS)., HOLLAND ND., J Exp Zool. April 1, 1965; 158 275-81.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8