Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (397) Expression Attributions Wiki
ECB-ANAT-14

Papers associated with digestive system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A role for polyglucans in a model sea urchin embryo cellular interaction., Singh S., Zygote. August 1, 2014; 22 (3): 419-29.


Hox expression in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. August 1, 2014; 243 (8): 1020-9.


Deep water echinoid-associated pontoniine shrimp "Periclimenes hertwigi Balss, 1913" species group (Crustacea: Decapoda: Caridea: Palaemonidae): species review, description of a new genus and species from Philippines., Marin I., Zootaxa. July 11, 2014; 3835 (3): 301-24.


Migration of sea urchin primordial germ cells., Campanale JP., Dev Dyn. July 1, 2014; 243 (7): 917-27.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin., Annunziata R., Development. June 1, 2014; 141 (12): 2462-72.


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A., Front Zool. May 9, 2014; 11 50.                  


Telling left from right: left-right asymmetric controls in sea urchins., Su YH., Genesis. March 1, 2014; 52 (3): 269-78.


Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens., Morris VB., Dev Genes Evol. February 1, 2014; 224 (1): 1-11.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties., Stock SR., Connect Tissue Res. January 1, 2014; 55 (1): 41-51.


Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing., Gao F., PLoS One. January 1, 2014; 9 (6): e100092.            


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            


mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos., Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.


Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo., Molina MD., Curr Opin Genet Dev. August 1, 2013; 23 (4): 445-53.


Tissue-specificity and phylogenetics of Pl-MT mRNA during Paracentrotus lividus embryogenesis., Russo R., Gene. May 1, 2013; 519 (2): 305-10.


FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii., Green SA., Development. March 1, 2013; 140 (5): 1024-33.


Proteases from the regenerating gut of the holothurian Eupentacta fraudatrix., Lamash NE., PLoS One. January 1, 2013; 8 (3): e58433.                  


Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans., Arenas-Mena C., Int J Dev Biol. January 1, 2013; 57 (1): 73-83.


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos., Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.              


Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo., Morris VB., Dev Genes Evol. November 1, 2012; 222 (6): 313-23.


Sea urchin tooth mineralization: calcite present early in the aboral plumula., Stock SR., J Struct Biol. November 1, 2012; 180 (2): 280-9.


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M., Development. October 1, 2012; 139 (20): 3786-94.


Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae., Shiomi K., Dev Genes Evol. September 1, 2012; 222 (5): 269-78.


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling., Wei Z., Development. May 1, 2012; 139 (9): 1662-9.


Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification., Stumpp M., Aquat Toxicol. April 1, 2012; 110-111 194-207.


Extracellular Ca2+ influx is crucial for the early embryonic development of the sea urchin Echinometra lucunter., de Araújo Leite JC., J Exp Zool B Mol Dev Evol. March 1, 2012; 318 (2): 123-33.


Global diversity of brittle stars (Echinodermata: Ophiuroidea)., Stöhr S., PLoS One. January 1, 2012; 7 (3): e31940.              


Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)., Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.    


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Stress response induced by carbon nanoparticles in Paracentrotus lividus., Carata E., Int J Mol Cell Med. January 1, 2012; 1 (1): 30-8.          


Unusual coelom formation in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Direct development of neurons within foregut endoderm of sea urchin embryos., Wei Z., Proc Natl Acad Sci U S A. May 31, 2011; 108 (22): 9143-7.


Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus., Omori A., Gene Expr Patterns. January 1, 2011; 11 (1-2): 48-56.


Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans., Bergeron KF., Mech Dev. January 1, 2011; 128 (1-2): 71-89.


On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement., Veis A., Cells Tissues Organs. January 1, 2011; 194 (2-4): 131-7.


Molecular aspects of biomineralization of the echinoderm endoskeleton., Gilbert PU., Prog Mol Subcell Biol. January 1, 2011; 52 199-223.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          


Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B., Russo R., Cell Stress Chaperones. November 1, 2010; 15 (6): 993-1001.


Use of specific glycosidases to probe cellular interactions in the sea urchin embryo., Idoni B., Exp Cell Res. August 1, 2010; 316 (13): 2204-11.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???