Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (82) Expression Attributions Wiki

Papers associated with

Limit to papers also referencing gene:
Results 1 - 50 of 82 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos., Chiaramonte M., Biochim Biophys Acta Mol Cell Res. January 1, 2020; 1867 (1): 118558.

High-Throughput Segmentation of Tiled Biological Structures using Random-Walk Distance Transforms., Baum D., Integr Comp Biol. December 1, 2019; 59 (6): 1700-1712.          

The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    

Morphology, shape variation and movement of skeletal elements in starfish (Asterias rubens)., Schwertmann L., J Anat. May 1, 2019; 234 (5): 656-667.

Transgenerational effects of UV-B radiation on egg size, fertilization, hatching and larval size of sea urchins Strongylocentrotus intermedius., Ding J., PeerJ. January 1, 2019; 7 e7598.            

Echinoids from the Tesero Member (Werfen Formation) of the Dolomites (Italy): implications for extinction and survival of echinoids in the aftermath of the end-Permian mass extinction., Thompson JR., PeerJ. January 1, 2019; 7 e7361.            

A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos., Hu MY., Elife. May 1, 2018; 7                         

SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning., Anishchenko E., Evodevo. January 22, 2018; 9 5.          

A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction., Thompson JR., R Soc Open Sci. January 1, 2018; 5 (1): 171548.      

Physiological and Behavioral Plasticity of the Sea Cucumber Holothuria forskali (Echinodermata, Holothuroidea) to Acidified Seawater., Yuan X., Front Physiol. January 1, 2018; 9 1339.        

Body wall structure in the starfish Asterias rubens., Blowes LM., J Anat. September 1, 2017; 231 (3): 325-341.            

Sea urchin growth dynamics at microstructural length scale revealed by Mn-labeling and cathodoluminescence imaging., Gorzelak P., Front Zool. February 23, 2017; 14 42.                  

TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo., Sun Z., Dev Biol. January 15, 2017; 421 (2): 149-160.

An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region., Otim O., Int J Dev Biol. January 1, 2017; 61 (8-9): 537-543.

A New Morphological Phylogeny of the Ophiuroidea (Echinodermata) Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics., Thuy B., PLoS One. May 4, 2016; 11 (5): e0156140.                

A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus., Karakostis K., J Proteomics. March 16, 2016; 136 133-44.

Development of the Sea Star Echinaster (Othilia) brasiliensis, with Inference on the Evolution of Development and Skeletal Plates in Asteroidea., Lopes EM., Biol Bull. February 1, 2016; 230 (1): 25-34.

Sea Urchin Morphogenesis., McClay DR., Curr Top Dev Biol. January 1, 2016; 117 15-29.

Skeletal regeneration in the brittle star Amphiura filiformis., Czarkwiani A., Front Zool. January 1, 2016; 13 18.                

A sea urchin Na(+)K(+)2Cl(-) cotransporter is involved in the maintenance of calcification-relevant cytoplasmic cords in Strongylocentrotus droebachiensis larvae., Basse WC., Comp Biochem Physiol A Mol Integr Physiol. September 1, 2015; 187 184-92.

Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos., Mozingo NM., Zygote. June 1, 2015; 23 (3): 467-73.

Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus)., Mesarič T., Aquat Toxicol. June 1, 2015; 163 158-66.

Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network., Sun Z., Gene Expr Patterns. November 1, 2014; 16 (2): 93-103.

bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            

Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.

A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment., Heyland A., BMC Dev Biol. May 19, 2014; 14 22.          

Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo., Adomako-Ankomah A., Genesis. March 1, 2014; 52 (3): 158-72.

Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K., Development. February 1, 2014; 141 (4): 950-61.

Initial stages of calcium uptake and mineral deposition in sea urchin embryos., Vidavsky N., Proc Natl Acad Sci U S A. January 7, 2014; 111 (1): 39-44.

Expression pattern of vascular endothelial growth factor 2 during sea urchin development., Kipryushina YO., Gene Expr Patterns. December 1, 2013; 13 (8): 402-6.

A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            

SM30 protein function during sea urchin larval spicule formation., Wilt F., J Struct Biol. August 1, 2013; 183 (2): 199-204.

Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization., Rao A., J Struct Biol. August 1, 2013; 183 (2): 205-15.

Growth attenuation with developmental schedule progression in embryos and early larvae of Sterechinus neumayeri raised under elevated CO2., Yu PC., PLoS One. January 1, 2013; 8 (1): e52448.              

Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro., Knapp RT., J Am Chem Soc. October 31, 2012; 134 (43): 17908-11.

Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          

Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea)., Sutherby J., BMC Dev Biol. April 27, 2012; 12 14.                

The genomic regulatory control of skeletal morphogenesis in the sea urchin., Rafiq K., Development. February 1, 2012; 139 (3): 579-90.

Global diversity of brittle stars (Echinodermata: Ophiuroidea)., Stöhr S., PLoS One. January 1, 2012; 7 (3): e31940.              

Rapid adaptation to food availability by a dopamine-mediated morphogenetic response., Adams DK., Nat Commun. December 20, 2011; 2 592.        

CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay., Stumpp M., Comp Biochem Physiol A Mol Integr Physiol. November 1, 2011; 160 (3): 331-40.

Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles., Moureaux C., Aquat Toxicol. October 1, 2011; 105 (3-4): 698-707.

Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                

Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth., Veis A., Front Biosci (Landmark Ed). June 1, 2011; 16 (7): 2540-60.

P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo., Adomako-Ankomah A., Dev Biol. May 1, 2011; 353 (1): 81-93.

Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices., Matranga V., Prog Mol Subcell Biol. January 1, 2011; 52 225-48.

Molecular aspects of biomineralization of the echinoderm endoskeleton., Gilbert PU., Prog Mol Subcell Biol. January 1, 2011; 52 199-223.

Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla., Sheppard Brennand H., PLoS One. June 29, 2010; 5 (6): e11372.        

SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus., Killian CE., Gene Expr Patterns. January 1, 2010; 10 (2-3): 135-9.

Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        

Page(s): 1 2 Next