Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (122) Expression Attributions Wiki
ECB-ANAT-65

Papers associated with rudiment

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition., Wessel GM., Sci Rep. February 6, 2020; 10 (1): 1973.                  


Insights into intestinal regeneration signaling mechanisms., Bello SA., Dev Biol. February 1, 2020; 458 (1): 12-31.


Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus., Katow H., Sci Rep. January 21, 2020; 10 (1): 778.                


Retinoic Acid Signaling Is Associated with Cell Proliferation, Muscle Cell Dedifferentiation, and Overall Rudiment Size during Intestinal Regeneration in the Sea Cucumber, Holothuria glaberrima., Viera-Vera J., Biomolecules. December 13, 2019; 9 (12):                         


Regeneration of the cell mass in larvae of temnopleurid sea urchins., Kasahara M., J Exp Zool B Mol Dev Evol. November 1, 2019; 332 (7): 245-257.


Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship., Craggs J., Sci Rep. September 10, 2019; 9 (1): 12984.                


The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel., Peters-Didier J., Evodevo. January 1, 2019; 10 8.              


Regeneration of the digestive tract of an anterior-eviscerating sea cucumber, Eupentacta quinquesemita, and the involvement of mesenchymal-epithelial transition in digestive tube formation., Okada A., Zoological Lett. January 1, 2019; 5 21.                  


Anteroposterior molecular registries in ectoderm of the echinus rudiment., Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.


Synergistic negative effects of thermal stress and altered food resources on echinoid larvae., Feehan CJ., Sci Rep. August 15, 2018; 8 (1): 12229.        


Effects of Nodal inhibition on development of temnopleurid sea urchins., Kasahara M., Evol Dev. May 1, 2018; 20 (3-4): 91-99.


The role of retinoic acid signaling in starfish metamorphosis., Yamakawa S., Evodevo. January 22, 2018; 9 10.            


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              


Specification of Larval Axes of Partial Embryos in the Temnopleurid Temnopleurus toreumaticus and the Strongylocentroid Hemicentrotus pulcherrimus., Kitazawa C., J Exp Zool B Mol Dev Evol. September 1, 2017; 328 (6): 533-545.


A key role for foxQ2 in anterior head and central brain patterning in insects., Kitzmann P., Development. August 15, 2017; 144 (16): 2969-2981.                    


Inhibition of cell proliferation does not slow down echinoderm neural regeneration., Mashanov VS., Front Zool. February 23, 2017; 14 12.      


Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan., Koop D., BMC Dev Biol. February 13, 2017; 17 (1): 4.          


Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens., Mayorova TD., Front Neurosci. December 1, 2016; 10 553.                  


A newly identified left-right asymmetry in larval sea urchins., Hodin J., R Soc Open Sci. August 31, 2016; 3 (8): 160139.            


The conserved genetic background for pluteus arm development in brittle stars and sea urchin., Morino Y., Evol Dev. January 1, 2016; 18 (2): 89-95.


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma., Byrne M., Mar Genomics. December 1, 2015; 24 Pt 1 41-5.


Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          


Gene Expression Changes Associated With the Developmental Plasticity of Sea Urchin Larvae in Response to Food Availability., Carrier TJ., Biol Bull. June 1, 2015; 228 (3): 171-80.


Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence., Hodin J., R Soc Open Sci. June 1, 2015; 2 (6): 150114.                


Larval starvation to satiation: influence of nutrient regime on the success of Acanthaster planci., Wolfe K., PLoS One. January 1, 2015; 10 (3): e0122010.            


Echinoderm conundrums: Hox genes, heterochrony, and an excess of mouths., Lacalli T., Evodevo. December 22, 2014; 5 (1): 46.  


Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae., Heyland A., PLoS One. December 1, 2014; 9 (12): e113866.              


Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima., Tossas K., Regeneration (Oxf). August 5, 2014; 1 (3): 10-26.                      


Hox expression in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. August 1, 2014; 243 (8): 1020-9.


How Hox genes can shed light on the place of echinoderms among the deuterostomes., David B., Evodevo. June 17, 2014; 5 22.              


A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment., Heyland A., BMC Dev Biol. May 19, 2014; 14 22.          


Transcriptomic analysis of the highly derived radial body plan of a sea urchin., Wygoda JA., Genome Biol Evol. April 1, 2014; 6 (4): 964-73.          


Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens., Morris VB., Dev Genes Evol. February 1, 2014; 224 (1): 1-11.


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            


Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo., Molina MD., Curr Opin Genet Dev. August 1, 2013; 23 (4): 445-53.


Radial glial cells play a key role in echinoderm neural regeneration., Mashanov VS., BMC Biol. April 18, 2013; 11 49.                        


Notch and Nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin., Materna SC., Development. April 1, 2013; 140 (8): 1796-806.


Meiotic gene expression initiates during larval development in the sea urchin., Yajima M., Dev Dyn. February 1, 2013; 242 (2): 155-63.


Proteases from the regenerating gut of the holothurian Eupentacta fraudatrix., Lamash NE., PLoS One. January 1, 2013; 8 (3): e58433.                  


Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea)., Sutherby J., BMC Dev Biol. April 27, 2012; 12 14.                


Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei., Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.


Binding properties of thyroxine to nuclear extract from sea urchin larvae., Saito M., Zoolog Sci. February 1, 2012; 29 (2): 79-82.


[The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny]., Rozhnov SV., Izv Akad Nauk Ser Biol. January 1, 2012; (2): 203-12.


Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)., Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.    


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Unusual coelom formation in the direct-type developing sand dollar Peronella japonica., Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.

???pagination.result.page??? 1 2 3 ???pagination.result.next???