Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (66) Expression Attributions Wiki

Papers associated with animal pole domain

Limit to papers also referencing gene:
Results 1 - 50 of 66 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I., Dev Biol. July 1, 2021; 475 131-144.

A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M., Development. December 16, 2019; 146 (24):                 

cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos., Yamazaki A., Genesis. June 1, 2019; 57 (6): e23302.

Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos., Range RC., Dev Biol. December 15, 2018; 444 (2): 83-92.

Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus., Yaguchi J., Dev Biol. December 1, 2018; 444 (1): 1-8.

Anteroposterior molecular registries in ectoderm of the echinus rudiment., Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.

A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos., Khadka A., Evodevo. January 22, 2018; 9 1.            

Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            

New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus., Perillo M., Front Endocrinol (Lausanne). January 1, 2018; 9 650.            

Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              

Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos., Mellott DO., Development. October 1, 2017; 144 (19): 3602-3611.

Correction: An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo., Range RC., Development. April 15, 2017; 144 (8): 1579.

Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    

A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos., Cheatle Jarvela AM., Development. November 15, 2016; 143 (22): 4214-4223.

Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               

An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo., Range RC., Development. May 1, 2016; 143 (9): 1523-33.

Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                

Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 4, 2016; 14 (3): e1002391.            

Neurogenic gene regulatory pathways in the sea urchin embryo., Wei Z., Development. January 15, 2016; 143 (2): 298-305.

Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               

An optimised whole mount in situ hybridisation protocol for the mollusc Lymnaea stagnalis., Hohagen J., BMC Dev Biol. March 28, 2015; 15 19.            

A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          

Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              

bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            

Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.

Specification and positioning of the anterior neuroectoderm in deuterostome embryos., Range R., Genesis. March 1, 2014; 52 (3): 222-34.

Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        

Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos., Jin Y., Cytoskeleton (Hoboken). August 1, 2013; 70 (8): 453-70.                  

Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning., Yankura KA., Proc Natl Acad Sci U S A. May 21, 2013; 110 (21): 8591-6.

Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD., Dev Biol. May 1, 2013; 377 (1): 236-44.

Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC., PLoS Biol. January 1, 2013; 11 (1): e1001467.              

Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei., Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.

Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo., Yaguchi J., Dev Biol. March 1, 2012; 363 (1): 74-83.

Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)., Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.    

Fez function is required to maintain the size of the animal plate in the sea urchin embryo., Yaguchi S., Development. October 1, 2011; 138 (19): 4233-43.

The evolution of nervous system patterning: insights from sea urchin development., Angerer LM., Development. September 1, 2011; 138 (17): 3613-23.

Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                

Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.

Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      

ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S., Dev Biol. December 1, 2010; 348 (1): 67-75.

Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    

Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.          

Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                

The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center., Wei Z., Development. April 1, 2009; 136 (7): 1179-89.

Neural development of the brittlestar Amphiura filiformis., Dupont S., Dev Genes Evol. March 1, 2009; 219 (3): 159-66.

Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.

A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos., Semenova MN., ACS Chem Biol. February 15, 2008; 3 (2): 95-100.

Development of the nervous system in the brittle star Amphipholis kochii., Hirokawa T., Dev Genes Evol. January 1, 2008; 218 (1): 15-21.

A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos., Yaguchi S., Dev Cell. January 1, 2008; 14 (1): 97-107.

Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension., Katow H., Int J Dev Biol. January 1, 2008; 52 (8): 1077-88.

Page(s): 1 2 Next