Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (99) Expression Attributions Wiki
ECB-ANAT-48

Papers associated with animal pole

Limit to papers also referencing gene:
Results 1 - 50 of 99 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

SGK regulates pH increase and cyclin B-Cdk1 activation to resume meiosis in starfish ovarian oocytes., Hosoda E., J Cell Biol. November 4, 2019; 218 (11): 3612-3629.   


Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron., Hardin J., Mol Biol Cell. July 22, 2019; 30 (16): 1911-1919.   


Expression of trpv channels during Xenopus laevis embryogenesis., Dong C., Gene Expr Patterns. December 1, 2018; 30 64-70.


Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions., Klughammer N., PLoS Comput Biol. November 15, 2018; 14 (11): e1006588.   


Control of nucleus positioning in mouse oocytes., Almonacid M., Semin Cell Dev Biol. October 1, 2018; 82 34-40.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.   


The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis., Wozniak KL., J Gen Physiol. September 3, 2018; 150 (9): 1249-1259.   


An actin shell delays oocyte chromosome capture by microtubules., Verlhac MH., J Cell Biol. August 6, 2018; 217 (8): 2601-2603.   


A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes., Bun P., Elife. January 19, 2018; 7   


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E., Front Endocrinol (Lausanne). January 1, 2018; 9 439.   


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.   


A cdk1 gradient guides surface contraction waves in oocytes., Bischof J., Nat Commun. October 11, 2017; 8 (1): 849.   


An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains during Sea Urchin Development., Costa S., PLoS One. January 1, 2017; 12 (1): e0170969.   


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5   


Acquisition of the dorsal structures in chordate amphioxus., Morov AR., Open Biol. June 1, 2016; 6 (6):   


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.   


Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium., Bement WM., Nat Cell Biol. November 1, 2015; 17 (11): 1471-83.   


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F., Nat Commun. October 1, 2015; 6 8434.   


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4   


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E., PLoS Biol. September 9, 2015; 13 (9): e1002247.   


Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus., Amemiya S., Acta Zool. January 1, 2015; 96 (1): 36-43.   


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.   


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A., Front Zool. May 9, 2014; 11 50.   


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.   


Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation., Adomako-Ankomah A., Development. October 1, 2013; 140 (20): 4214-25.


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.   


Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD., Dev Biol. May 1, 2013; 377 (1): 236-44.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ., PLoS One. January 1, 2013; 8 (11): e80693.   


The tension at the top of the animal pole decreases during meiotic cell division., Satoh SK., PLoS One. January 1, 2013; 8 (11): e79389.   


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M., Development. October 1, 2012; 139 (20): 3786-94.


The effect of taxol microinjection on the microtubular structure in polar body formation of starfish oocytes., Kikuchi Y., Cytoskeleton (Hoboken). February 1, 2012; 69 (2): 125-32.


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.   


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.   


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.   


ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S., Dev Biol. December 1, 2010; 348 (1): 67-75.


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA., BMC Biol. November 30, 2010; 8 143.   


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.   


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F., PLoS Biol. November 1, 2009; 7 (11): e1000248.   


Guanine nucleotides in the meiotic maturation of starfish oocytes: regulation of the actin cytoskeleton and of Ca(2+) signaling., Kyozuka K., PLoS One. July 20, 2009; 4 (7): e6296.   


The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center., Wei Z., Development. April 1, 2009; 136 (7): 1179-89.


Calyculin-A induces cleavage in a random plane in unfertilized sea urchin eggs., Goda M., Biol Bull. February 1, 2009; 216 (1): 40-4.


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Development of the nervous system in the brittle star Amphipholis kochii., Hirokawa T., Dev Genes Evol. January 1, 2008; 218 (1): 15-21.


Xenopus laevis Keller Explants., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4749.


Strongylocentrotus drobachiensis oocytes maintain a microtubule organizing center throughout oogenesis: implications for the establishment of egg polarity in sea urchins., Egaña AL., Mol Reprod Dev. January 1, 2007; 74 (1): 76-87.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.   


Quantitative analysis of cortical actin filaments during polar body formation in starfish oocytes., Hamaguchi Y., Cell Struct Funct. January 1, 2007; 32 (1): 29-40.

Page(s): 1 2 Next