Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (41) Expression Attributions Wiki
ECB-ANAT-258

Papers associated with hindgut

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              


Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea)., Ezhova OV., J Morphol. June 1, 2018; 279 (6): 792-808.


The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian., He LS., Appl Environ Microbiol. January 1, 2018; 84 (1):


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva., Buckley KM., Elife. April 27, 2017; 6                                   


Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b., Cui M., Cell Rep. April 11, 2017; 19 (2): 364-374.


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva., Perillo M., BMC Evol Biol. May 26, 2016; 16 (1): 117.              


Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.            


Changes in Sediment Fatty Acid Composition during Passage through the Gut of Deposit Feeding Holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835)., Mfilinge PL., J Lipids. January 1, 2016; 2016 4579794.      


Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity., Karakostis K., Sci Rep. December 7, 2015; 5 17665.            


Genome-wide assessment of differential effector gene use in embryogenesis., Barsi JC., Development. November 15, 2015; 142 (22): 3892-901.


ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos., Shipp LE., Development. October 15, 2015; 142 (20): 3537-48.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing., Gao F., PLoS One. January 1, 2014; 9 (6): e100092.            


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.                            


mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos., Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.


Tissue-specificity and phylogenetics of Pl-MT mRNA during Paracentrotus lividus embryogenesis., Russo R., Gene. May 1, 2013; 519 (2): 305-10.


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage., Peter IS., Dev Biol. April 15, 2010; 340 (2): 188-99.


Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut., Cole AG., Development. February 1, 2009; 136 (4): 541-9.


Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula., Livi CB., Gene Expr Patterns. January 1, 2007; 7 (1-2): 1-7.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Expression of AmKrox, a starfish ortholog of a sea urchin transcription factor essential for endomesodermal specification., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 423-6.


Expression of a src-type protein tyrosine kinase gene, AcSrc1, in the sea urchin embryo., Onodera H., Dev Growth Differ. February 1, 1999; 41 (1): 19-28.


Histone deacetylase mRNA temporally and spatially regulated in its expression in sea urchin embryos., Nemer M., Dev Growth Differ. December 1, 1998; 40 (6): 583-90.


Cis-regulation downstream of cell type specification: a single compact element controls the complex expression of the CyIIa gene in sea urchin embryos., Arnone MI., Development. April 1, 1998; 125 (8): 1381-95.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A., Dev Biol. March 1, 1998; 195 (1): 38-48.


Regulative capacity of the archenteron during gastrulation in the sea urchin., McClay DR., Development. February 1, 1996; 122 (2): 607-16.


Products, genetic linkage and limb patterning activity of a murine hedgehog gene., Chang DT., Development. November 1, 1994; 120 (11): 3339-53.


Endo16, a large multidomain protein found on the surface and ECM of endodermal cells during sea urchin gastrulation, binds calcium., Soltysik-Española M., Dev Biol. September 1, 1994; 165 (1): 73-85.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


The microbial environment of marine deposit-feeder guts characterized via microelectrodes., Plante C., Microb Ecol. May 1, 1992; 23 (3): 257-77.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.

???pagination.result.page??? 1