Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (42) Expression Attributions Wiki
ECB-ANAT-297

Papers associated with pigment cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Regulation of dynamic pigment cell states at single-cell resolution., Perillo M., Elife. August 19, 2020; 9                               


Gastrulation in the sea urchin., McClay DR., Curr Top Dev Biol. January 1, 2020; 136 195-218.


Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids., Erkenbrack EM., Dev Genes Evol. January 1, 2018; 228 (1): 1-11.


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.              


IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva., Buckley KM., Elife. April 27, 2017; 6                                   


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA., Elife. July 30, 2016; 5               


Roles of hesC and gcm in echinoid larval mesenchyme cell development., Yamazaki A., Dev Growth Differ. April 1, 2016; 58 (3): 315-26.


Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development., Macedo D., Toxicol In Vitro. March 1, 2016; 31 72-85.


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Pigment cell differentiation in sea urchin blastula-derived primary cell cultures., Ageenko NV., Mar Drugs. June 27, 2014; 12 (7): 3874-91.                  


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes., Solek CM., Dev Biol. October 1, 2013; 382 (1): 280-92.


Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A., Dev Biol. April 15, 2012; 364 (2): 259-67.


A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.


Synthetic in vivo validation of gene network circuitry., Damle SS., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius., Ageenko NV., Evid Based Complement Alternat Med. January 1, 2011; 2011 730356.            


Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase., Calestani C., Dev Biol. April 15, 2010; 340 (2): 249-55.


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo., Duboc V., Development. January 1, 2010; 137 (2): 223-35.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Logic of gene regulatory networks., Materna SC., Curr Opin Biotechnol. August 1, 2007; 18 (4): 351-4.


cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification., Ransick A., Dev Biol. September 15, 2006; 297 (2): 587-602.


Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus., EgaƱa AL., Dev Dyn. October 1, 2004; 231 (2): 370-8.


Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos., Takata H., Zoolog Sci. October 1, 2004; 21 (10): 1025-35.


Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening., Calestani C., Development. October 1, 2003; 130 (19): 4587-96.


Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. January 1, 2003; 45 (5-6): 473-83.


Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm., Katow H., Dev Growth Differ. October 1, 2002; 44 (5): 437-55.


Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis., Kominami T., Dev Growth Differ. April 1, 2002; 44 (2): 113-25.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM., Development. November 1, 2001; 128 (22): 4393-404.


Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. February 1, 2000; 42 (1): 41-51.


Role of cell adhesion in the specification of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Growth Differ. December 1, 1998; 40 (6): 609-18.


SpHmx, a sea urchin homeobox gene expressed in embryonic pigment cells., Martinez P., Dev Biol. January 15, 1997; 181 (2): 213-22.


Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells., Ettensohn CA., Development. April 1, 1993; 117 (4): 1275-85.


An acid extract from dissociation medium of sea urchin embryos, induces mesenchyme differentiation., Dolo V., Cell Biol Int Rep. June 1, 1992; 16 (6): 517-32.


Macromere cell fates during sea urchin development., Cameron RA., Development. December 1, 1991; 113 (4): 1085-91.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus., Gibson AW., Dev Biol. February 1, 1985; 107 (2): 414-9.


Local light stimulation of isolated chromatophores of the sea urchin Centrostephanus longispinus., Gras H., Eur J Cell Biol. February 1, 1981; 23 (2): 258-66.


Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus., Weber W., Cell Tissue Res. January 1, 1980; 206 (1): 21-33.

???pagination.result.page??? 1