Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (18) Expression Attributions Wiki
ECB-ANAT-192

Papers associated with apical tuft

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo., Range RC., Development. May 1, 2016; 143 (9): 1523-33.


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M., Nat Commun. February 18, 2015; 6 6243.          


Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              


bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S., Sci Rep. October 31, 2014; 4 6852.            


Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos., Jin Y., Cytoskeleton (Hoboken). August 1, 2013; 70 (8): 453-70.                  


Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei., Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S., Dev Biol. December 1, 2010; 348 (1): 67-75.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos., Semenova MN., ACS Chem Biol. February 15, 2008; 3 (2): 95-100.


Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF., Evol Dev. January 1, 2007; 9 (1): 10-24.


An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos., Katow H., Dev Growth Differ. October 1, 2001; 43 (5): 601-10.


Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo., Katow H., Dev Growth Differ. April 1, 1997; 39 (2): 207-19.


Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function., Katow H., Rouxs Arch Dev Biol. May 1, 1996; 205 (7-8): 371-381.


Phenotypic switching to long cilia effected by various proteases: results with Dendraster excentricus and Stronglyocentrotus purpuratus blastulae., Riederer-Henderson MA., J Exp Zool. December 1, 1986; 240 (3): 327-33.

???pagination.result.page??? 1