Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (45) Expression Attributions Wiki
ECB-ANAT-261

Papers associated with midgut

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Na+/H+-exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva., Petersen I., J Exp Biol. April 1, 2021; 224 (7):


Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification., Lee HG., Comp Biochem Physiol A Mol Integr Physiol. August 1, 2019; 234 87-97.


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva., Buckley KM., Elife. April 27, 2017; 6                                   


An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response., Buckley KM., Front Immunol. March 13, 2017; 8 1297.    


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva., Perillo M., BMC Evol Biol. May 26, 2016; 16 (1): 117.              


Changes in Sediment Fatty Acid Composition during Passage through the Gut of Deposit Feeding Holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835)., Mfilinge PL., J Lipids. January 1, 2016; 2016 4579794.      


Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity., Karakostis K., Sci Rep. December 7, 2015; 5 17665.            


Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes., Stumpp M., Sci Rep. June 8, 2015; 5 10421.      


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Tissue-specificity and phylogenetics of Pl-MT mRNA during Paracentrotus lividus embryogenesis., Russo R., Gene. May 1, 2013; 519 (2): 305-10.


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut., Cole AG., Development. February 1, 2009; 136 (4): 541-9.


Seasonality of Lutzomyia fairtigi (Diptera: Psychodidae: Phlebotominae), a species endemic to Eastern Colombia., Molina JA., Mem Inst Oswaldo Cruz. August 1, 2008; 103 (5): 477-82.


Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development., Yoshida S., PLoS Pathog. December 1, 2007; 3 (12): e192.          


Sequential logic model deciphers dynamic transcriptional control of gene expressions., Yeo ZX., PLoS One. August 22, 2007; 2 (8): e776.                  


Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula., Livi CB., Gene Expr Patterns. January 1, 2007; 7 (1-2): 1-7.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB., Dev Biol. May 15, 2006; 293 (2): 513-25.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo., Yuh CH., Dev Biol. May 15, 2005; 281 (2): 286-98.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


Expression of a gene encoding a Gata transcription factor during embryogenesis of the starfish Asterina miniata., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 419-22.


Expression of AmKrox, a starfish ortholog of a sea urchin transcription factor essential for endomesodermal specification., Hinman VF., Gene Expr Patterns. August 1, 2003; 3 (4): 423-6.


Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control., Yuh CH., Development. March 1, 2001; 128 (5): 617-29.


Expression of a src-type protein tyrosine kinase gene, AcSrc1, in the sea urchin embryo., Onodera H., Dev Growth Differ. February 1, 1999; 41 (1): 19-28.


Cis-regulation downstream of cell type specification: a single compact element controls the complex expression of the CyIIa gene in sea urchin embryos., Arnone MI., Development. April 1, 1998; 125 (8): 1381-95.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A., Dev Biol. March 1, 1998; 195 (1): 38-48.


Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae., Arnone MI., Development. November 1, 1997; 124 (22): 4649-59.


Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples., Kirchhamer CV., Proc Natl Acad Sci U S A. September 3, 1996; 93 (18): 9322-8.


Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo., Yuh CH., Development. April 1, 1996; 122 (4): 1069-82.


Regulative capacity of the archenteron during gastrulation in the sea urchin., McClay DR., Development. February 1, 1996; 122 (2): 607-16.


Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder., McInerney JO., Appl Environ Microbiol. April 1, 1995; 61 (4): 1646-8.


Complexity and organization of DNA-protein interactions in the 5''-regulatory region of an endoderm-specific marker gene in the sea urchin embryo., Yuh CH., Mech Dev. August 1, 1994; 47 (2): 165-86.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


The microbial environment of marine deposit-feeder guts characterized via microelectrodes., Plante C., Microb Ecol. May 1, 1992; 23 (3): 257-77.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Action of crude and fractioned homogenates of the midgut gland of the sea hare Aplysia brasiliana Rang, 1828 on some cholinoceptive structures., de Freitas JC., Comp Biochem Physiol C. January 1, 1977; 56 (1): 57-61.

???pagination.result.page??? 1