Results 1 - 50 of 122 results
Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition. , Wessel GM ., Sci Rep. February 6, 2020; 10 (1): 1973.
Insights into intestinal regeneration signaling mechanisms. , Bello SA., Dev Biol. February 1, 2020; 458 (1): 12-31.
Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus. , Katow H., Sci Rep. January 21, 2020; 10 (1): 778.
Retinoic Acid Signaling Is Associated with Cell Proliferation, Muscle Cell Dedifferentiation, and Overall Rudiment Size during Intestinal Regeneration in the Sea Cucumber, Holothuria glaberrima. , Viera-Vera J., Biomolecules. December 13, 2019; 9 (12):
Regeneration of the cell mass in larvae of temnopleurid sea urchins. , Kasahara M., J Exp Zool B Mol Dev Evol. November 1, 2019; 332 (7): 245-257.
Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. , Craggs J., Sci Rep. September 10, 2019; 9 (1): 12984.
The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel. , Peters-Didier J., Evodevo. January 1, 2019; 10 8.
Regeneration of the digestive tract of an anterior-eviscerating sea cucumber, Eupentacta quinquesemita, and the involvement of mesenchymal-epithelial transition in digestive tube formation. , Okada A., Zoological Lett. January 1, 2019; 5 21.
Anteroposterior molecular registries in ectoderm of the echinus rudiment. , Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.
Synergistic negative effects of thermal stress and altered food resources on echinoid larvae. , Feehan CJ., Sci Rep. August 15, 2018; 8 (1): 12229.
Effects of Nodal inhibition on development of temnopleurid sea urchins. , Kasahara M., Evol Dev. May 1, 2018; 20 (3-4): 91-99.
The role of retinoic acid signaling in starfish metamorphosis. , Yamakawa S., Evodevo. January 22, 2018; 9 10.
Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK ( ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus). , Taylor E., Front Endocrinol (Lausanne). January 1, 2018; 9 439.
Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. , Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.
Specification of Larval Axes of Partial Embryos in the Temnopleurid Temnopleurus toreumaticus and the Strongylocentroid Hemicentrotus pulcherrimus. , Kitazawa C., J Exp Zool B Mol Dev Evol. September 1, 2017; 328 (6): 533-545.
A key role for foxQ2 in anterior head and central brain patterning in insects. , Kitzmann P., Development. August 15, 2017; 144 (16): 2969-2981.
Inhibition of cell proliferation does not slow down echinoderm neural regeneration. , Mashanov VS ., Front Zool. February 23, 2017; 14 12.
Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. , Koop D., BMC Dev Biol. February 13, 2017; 17 (1): 4.
Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens. , Mayorova TD., Front Neurosci. December 1, 2016; 10 553.
A newly identified left-right asymmetry in larval sea urchins. , Hodin J., R Soc Open Sci. August 31, 2016; 3 (8): 160139.
The conserved genetic background for pluteus arm development in brittle stars and sea urchin. , Morino Y., Evol Dev. January 1, 2016; 18 (2): 89-95.
Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton. , Koga H ., PLoS One. January 1, 2016; 11 (2): e0149067.
Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma. , Byrne M ., Mar Genomics. December 1, 2015; 24 Pt 1 41-5.
Hemichordate genomes and deuterostome origins. , Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.
Gene Expression Changes Associated With the Developmental Plasticity of Sea Urchin Larvae in Response to Food Availability. , Carrier TJ., Biol Bull. June 1, 2015; 228 (3): 171-80.
Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. , Hodin J., R Soc Open Sci. June 1, 2015; 2 (6): 150114.
Larval starvation to satiation: influence of nutrient regime on the success of Acanthaster planci. , Wolfe K., PLoS One. January 1, 2015; 10 (3): e0122010.
Echinoderm conundrums: Hox genes, heterochrony, and an excess of mouths. , Lacalli T., Evodevo. December 22, 2014; 5 (1): 46.
Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae. , Heyland A ., PLoS One. December 1, 2014; 9 (12): e113866.
Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima. , Tossas K., Regeneration (Oxf). August 5, 2014; 1 (3): 10-26.
Hox expression in the direct-type developing sand dollar Peronella japonica. , Tsuchimoto J., Dev Dyn. August 1, 2014; 243 (8): 1020-9.
How Hox genes can shed light on the place of echinoderms among the deuterostomes. , David B., Evodevo. June 17, 2014; 5 22.
A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment. , Heyland A ., BMC Dev Biol. May 19, 2014; 14 22.
Transcriptomic analysis of the highly derived radial body plan of a sea urchin. , Wygoda JA., Genome Biol Evol. April 1, 2014; 6 (4): 964-73.
Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. , Morris VB., Dev Genes Evol. February 1, 2014; 224 (1): 1-11.
A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions. , Kaul-Strehlow S., Front Zool. September 6, 2013; 10 (1): 53.
Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. , Molina MD., Curr Opin Genet Dev. August 1, 2013; 23 (4): 445-53.
Radial glial cells play a key role in echinoderm neural regeneration. , Mashanov VS ., BMC Biol. April 18, 2013; 11 49.
Notch and Nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin. , Materna SC., Development. April 1, 2013; 140 (8): 1796-806.
Meiotic gene expression initiates during larval development in the sea urchin. , Yajima M ., Dev Dyn. February 1, 2013; 242 (2): 155-63.
Proteases from the regenerating gut of the holothurian Eupentacta fraudatrix. , Lamash NE., PLoS One. January 1, 2013; 8 (3): e58433.
Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea). , Sutherby J., BMC Dev Biol. April 27, 2012; 12 14.
Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei. , Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.
Binding properties of thyroxine to nuclear extract from sea urchin larvae. , Saito M., Zoolog Sci. February 1, 2012; 29 (2): 79-82.
[The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny]. , Rozhnov SV., Izv Akad Nauk Ser Biol. January 1, 2012; (2): 203-12.
Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea). , Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.
Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. , Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.
Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. , Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.
Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. , Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.
Unusual coelom formation in the direct-type developing sand dollar Peronella japonica. , Tsuchimoto J., Dev Dyn. November 1, 2011; 240 (11): 2432-9.