Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (116) Expression Attributions Wiki
ECB-ANAT-291

Papers associated with embryonic non-skeletogenic mesenchyme

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron., Hardin J., Mol Biol Cell. July 22, 2019; 30 (16): 1911-1919.          


The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel., Peters-Didier J., Evodevo. January 1, 2019; 10 8.              


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.            


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity., Karakostis K., Sci Rep. December 7, 2015; 5 17665.            


Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin., Magesky A., Aquat Toxicol. October 1, 2015; 167 106-23.


Development of the GABA-ergic signaling system and its role in larval swimming in sea urchin., Katow H., J Exp Biol. May 1, 2013; 216 (Pt 9): 1704-16.


Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos., Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.              


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M., Development. October 1, 2012; 139 (20): 3786-94.


ATP-binding cassette (ABC) transporter expression and localization in sea urchin development., Shipp LE., Dev Dyn. June 1, 2012; 241 (6): 1111-24.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus., Ohguro Y., Dev Growth Differ. January 1, 2011; 53 (1): 110-23.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY., Dev Biol. July 15, 2008; 319 (2): 406-15.


Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo., Yamazaki A., Dev Biol. February 15, 2008; 314 (2): 433-42.


Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos., Kiyomoto M., Dev Growth Differ. December 1, 2007; 49 (9): 731-41.


A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae., Yajima M., Dev Biol. July 15, 2007; 307 (2): 272-81.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development., Yajima M., Evol Dev. January 1, 2007; 9 (3): 257-66.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ., Genome Biol. January 1, 2007; 8 (5): R85.                


Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus., Sato Y., Cell Tissue Res. December 1, 2006; 326 (3): 851-60.


Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development., Walton KD., Dev Biol. December 1, 2006; 300 (1): 153-64.


A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos., Hardin J., Dev Dyn. November 1, 2006; 235 (11): 3121-31.


Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development., Croce J., Development. February 1, 2006; 133 (3): 547-57.


A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo., Peterson RE., Dev Biol. June 1, 2005; 282 (1): 126-37.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH., Genesis. July 1, 2004; 39 (3): 194-205.


Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo., Fernandez-Serra M., Dev Biol. April 15, 2004; 268 (2): 384-402.


The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H., Mech Dev. April 1, 2004; 121 (4): 325-37.


cis-Regulatory activity of randomly chosen genomic fragments from the sea urchin., Cameron RA., Gene Expr Patterns. March 1, 2004; 4 (2): 205-13.


Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei., Takata H., Dev Growth Differ. February 1, 2004; 46 (1): 23-35.


Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening., Calestani C., Development. October 1, 2003; 130 (19): 4587-96.


Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo., Hamada M., Dev Growth Differ. August 1, 2003; 45 (4): 339-50.


Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae., Kominami T., Dev Growth Differ. April 1, 2003; 45 (2): 129-42.


Utilization of a particle gun DNA introduction system for the analysis of cis-regulatory elements controlling the spatial expression pattern of the arylsulfatase gene (HpArs) in sea urchin embryos., Kurita M., Dev Genes Evol. February 1, 2003; 213 (1): 44-9.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T., Development. November 1, 2002; 129 (22): 5205-16.


In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos., Shoguchi E., Dev Genes Evol. October 1, 2002; 212 (9): 407-18.


SpADAM, a sea urchin ADAM, has conserved structure and expression., Rise M., Mech Dev. September 1, 2002; 117 (1-2): 275-81.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A., Dev Biol. June 1, 2002; 246 (1): 132-47.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH., Dev Biol. June 1, 2002; 246 (1): 162-90.


brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening., Rast JP., Dev Biol. June 1, 2002; 246 (1): 191-208.


Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus., Tokuoka M., Dev Growth Differ. June 1, 2002; 44 (3): 239-50.


Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm., Consales C., Gene. April 3, 2002; 287 (1-2): 75-81.


HSP90 function is required for morphogenesis in ascidian and echinoid embryos., Bishop CD., Dev Genes Evol. March 1, 2002; 212 (2): 70-80.


Molecular patterning along the sea urchin animal-vegetal axis., Brandhorst BP., Int Rev Cytol. January 1, 2002; 213 183-232.


Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene., Martin EL., Dev Biol. August 1, 2001; 236 (1): 46-63.


Disappearance of an epithelial cell surface-specific glycoprotein (Epith-1) associated with epithelial-mesenchymal conversion in sea urchin embryogenesis., Kanoh K., Dev Growth Differ. February 1, 2001; 43 (1): 83-95.

???pagination.result.page??? 1 2 3 ???pagination.result.next???