Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (38) Expression Attributions Wiki
ECB-ANAT-268

Papers associated with foregut

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus., Slota LA., Evodevo. January 1, 2019; 10 2.              


Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development., Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            


New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus., Perillo M., Front Endocrinol (Lausanne). January 1, 2018; 9 650.            


Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva., Ch Ho E., Immunol Cell Biol. October 1, 2016; 94 (9): 861-874.                


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva., Perillo M., BMC Evol Biol. May 26, 2016; 16 (1): 117.              


Changes in Sediment Fatty Acid Composition during Passage through the Gut of Deposit Feeding Holothurians: Holothuria atra (Jaeger, 1883) and Holothuria leucospilota (Brandt, 1835)., Mfilinge PL., J Lipids. January 1, 2016; 2016 4579794.      


Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity., Karakostis K., Sci Rep. December 7, 2015; 5 17665.            


Hemichordate genomes and deuterostome origins., Simakov O., Nature. November 26, 2015; 527 (7579): 459-65.                          


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A., Front Zool. May 9, 2014; 11 50.                  


Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing., Gao F., PLoS One. January 1, 2014; 9 (6): e100092.            


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS., Evodevo. August 9, 2012; 3 (1): 17.          


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Direct development of neurons within foregut endoderm of sea urchin embryos., Wei Z., Proc Natl Acad Sci U S A. May 31, 2011; 108 (22): 9143-7.


Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development., Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.                    


Suppressor of Hairless (Su(H)) is required for foregut development in the sea urchin embryo., Karasawa K., Zoolog Sci. October 1, 2009; 26 (10): 686-90.


Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox., Cole AG., Gene Expr Patterns. June 1, 2009; 9 (5): 324-8.


Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells., Cavalieri V., Gene Expr Patterns. January 1, 2007; 7 (1-2): 124-30.


Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian., Dunn EF., Evol Dev. January 1, 2007; 9 (1): 10-24.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo., Arenas-Mena C., Dev Growth Differ. September 1, 2006; 48 (7): 463-72.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ., BMC Biol. February 9, 2006; 4 4.            


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors., Lee PY., Gene Expr Patterns. December 1, 2004; 5 (2): 161-5.


The expression of SpRunt during sea urchin embryogenesis., Robertson AJ., Mech Dev. September 1, 2002; 117 (1-2): 327-30.


Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos., Di Bernardo M., Development. May 1, 1999; 126 (10): 2171-9.


Histone deacetylase mRNA temporally and spatially regulated in its expression in sea urchin embryos., Nemer M., Dev Growth Differ. December 1, 1998; 40 (6): 583-90.


Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo., Ransick A., Dev Biol. March 1, 1998; 195 (1): 38-48.


Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere., Yoshikawa S., Dev Growth Differ. June 1, 1997; 39 (3): 319-27.


Regulative capacity of the archenteron during gastrulation in the sea urchin., McClay DR., Development. February 1, 1996; 122 (2): 607-16.


The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo., Stenzel P., Dev Biol. November 1, 1994; 166 (1): 149-58.


Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis., Wessel GM., Dev Biol. January 1, 1993; 155 (1): 161-71.


The microbial environment of marine deposit-feeder guts characterized via microelectrodes., Plante C., Microb Ecol. May 1, 1992; 23 (3): 257-77.


A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos., Coffman JA., Dev Biol. July 1, 1990; 140 (1): 93-104.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.

???pagination.result.page??? 1