Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (92) Expression Attributions Wiki
ECB-ANAT-42

Papers associated with animal hemisphere

Limit to papers also referencing gene:
Results 1 - 50 of 92 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos., Yamazaki A., Genesis. June 1, 2019; 57 (6): e23302.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus., Liao WY., PLoS One. November 10, 2017; 12 (11): e0187987.            


Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior., Witman JD., PLoS One. April 17, 2017; 12 (4): e0175705.            


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V., PLoS One. March 28, 2017; 12 (3): e0174404.              


An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans., Wong KS., Evol Dev. July 1, 2016; 18 (4): 254-66.


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


Beyond BLASTing: tertiary and quaternary structure analysis helps identify major vault proteins., Daly TK., Genome Biol Evol. January 1, 2013; 5 (1): 217-32.              


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos., Wakayama N., Front Endocrinol (Lausanne). January 1, 2013; 4 112.              


The tension at the top of the animal pole decreases during meiotic cell division., Satoh SK., PLoS One. January 1, 2013; 8 (11): e79389.                


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.                                


Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay., Kiyomoto M., Ecotoxicology. March 1, 2010; 19 (3): 563-70.


Action at a distance during cytokinesis., von Dassow G., J Cell Biol. December 14, 2009; 187 (6): 831-45.                


Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres., Iijima M., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Specification process of animal plate in the sea urchin embryo., Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm., Love AC., Evol Dev. January 1, 2007; 9 (1): 51-68.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo., Yamazaki A., Dev Genes Evol. September 1, 2005; 215 (9): 450-59.


Developmental potential of small micromeres in sea urchin embryos., Kurihara H., Zoolog Sci. August 1, 2005; 22 (8): 845-52.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM., Development. March 1, 2005; 132 (5): 999-1008.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton., Lim D., J Biol Chem. October 24, 2003; 278 (43): 42505-14.


Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis., Croce J., Mech Dev. May 1, 2003; 120 (5): 561-72.


Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes., Lénárt P., J Cell Biol. March 31, 2003; 160 (7): 1055-68.                


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Transient activation of the micro1 homeobox gene family in the sea urchin ( Hemicentrotus pulcherrimus) micromere., Kitamura K., Dev Genes Evol. February 1, 2002; 212 (1): 1-10.


Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo., Masui M., Dev Growth Differ. February 1, 2001; 43 (1): 43-53.


Regulating potential in development of a direct developing echinoid, Peronella japonica., Kitazawa C., Dev Growth Differ. February 1, 2001; 43 (1): 73-82.


Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos., Ishizuka Y., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.


Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava., Henry JQ., Evol Dev. January 1, 2001; 3 (6): 375-90.


A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis., Angerer LM., Development. March 1, 2000; 127 (5): 1105-14.


Regulative potential to form an amniotic cavity in mesomeres of a direct developing echinoid, Peronella japonica., Kitazawa C., Zygote. January 1, 2000; 8 Suppl 1 S79.


Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae., Gustafson T., Exp Cell Res. December 15, 1999; 253 (2): 288-95.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP., Development. December 1, 1999; 126 (23): 5473-83.


Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants., Minokawa T., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.

Page(s): 1 2 Next