Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (227) Expression Attributions Wiki
ECB-ANAT-124

Papers associated with micromere

Limit to papers also referencing gene:
Results 1 - 50 of 227 results

Page(s): 1 2 3 4 5 Next

Sort Newest To Oldest Sort Oldest To Newest

Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition., Bodenstein L., Mech Dev. June 1, 2020; 162 103606.


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  


Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates., Ivashkin E., ACS Chem Neurosci. August 21, 2019; 10 (8): 3888-3899.


Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways., Oulhen N., Dev Biol. August 1, 2019; 452 (1): 34-42.


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs)., Campanale JP., Methods Cell Biol. January 1, 2019; 150 269-292.


Culture of and experiments with sea urchin embryo primary mesenchyme cells., Moreno B., Methods Cell Biol. January 1, 2019; 150 293-330.


An optogenetic approach to control protein localization during embryogenesis of the sea urchin., Uchida A., Dev Biol. September 1, 2018; 441 (1): 19-30.


Transforming a transcription factor., Burke RD., Elife. January 8, 2018; 7   


Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins., Thompson JR., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5870-5877.


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V., PLoS One. March 28, 2017; 12 (3): e0174404.              


TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo., Sun Z., Dev Biol. January 15, 2017; 421 (2): 149-160.


An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region., Otim O., Int J Dev Biol. January 1, 2017; 61 (8-9): 537-543.


An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin., Oulhen N., Dev Biol. October 1, 2016; 418 (1): 146-156.


Cilia play a role in breaking left-right symmetry of the sea urchin embryo., Takemoto A., Genes Cells. June 1, 2016; 21 (6): 568-78.


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Migration of sea urchin primordial germ cells., Campanale JP., Dev Dyn. July 1, 2014; 243 (7): 917-27.


Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A., Development. July 1, 2014; 141 (13): 2669-79.


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ., Evodevo. June 17, 2014; 5 39.          


Piwi regulates Vasa accumulation during embryogenesis in the sea urchin., Yajima M., Dev Dyn. March 1, 2014; 243 (3): 451-8.


Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H., Biol Open. January 15, 2014; 3 (1): 94-102.              


Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors., Andrikou C., Evodevo. December 2, 2013; 4 (1): 33.              


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA., Evodevo. November 4, 2013; 4 (1): 31.        


Towards 3D in silico modeling of the sea urchin embryonic development., Rizzi B., J Chem Biol. September 13, 2013; 7 (1): 17-28.      


Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5''-cap and a 3''-UTR., Oulhen N., Mol Reprod Dev. July 1, 2013; 80 (7): 561-9.


The 3''UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin., Oulhen N., Dev Biol. May 1, 2013; 377 (1): 275-83.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ., PLoS One. January 1, 2013; 8 (11): e80693.          


The forkhead transcription factor FoxY regulates Nanos., Song JL., Mol Reprod Dev. October 1, 2012; 79 (10): 680-8.


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M., Development. October 1, 2012; 139 (20): 3786-94.


Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii., Vaughn R., Evodevo. September 3, 2012; 3 (1): 19.            


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos., Materna SC., Dev Biol. April 1, 2012; 364 (1): 77-87.


Programmed reduction of ABC transporter activity in sea urchin germline progenitors., Campanale JP., Development. February 1, 2012; 139 (4): 783-92.


Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis., Lhomond G., Development. February 1, 2012; 139 (4): 816-25.


Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva., Luo YJ., PLoS Biol. January 1, 2012; 10 (10): e1001402.            


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S., Dev Biol. September 15, 2011; 357 (2): 505-17.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T., Development. June 1, 2011; 138 (12): 2581-90.

Page(s): 1 2 3 4 5 Next