Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (358) Expression Attributions Wiki
ECB-ANAT-43

Papers associated with vegetal hemisphere

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A single cell RNA sequencing resource for early sea urchin development., Foster S., Development. September 11, 2020; 147 (17):


Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition., Bodenstein L., Mech Dev. June 1, 2020; 162 103606.


pmar1/phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms., Yamazaki A., Development. February 26, 2020; 147 (4):


Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition., Wessel GM., Sci Rep. February 6, 2020; 10 (1): 1973.                  


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J., Nat Commun. August 22, 2019; 10 (1): 3779.                  


Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates., Ivashkin E., ACS Chem Neurosci. August 21, 2019; 10 (8): 3888-3899.


Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways., Oulhen N., Dev Biol. August 1, 2019; 452 (1): 34-42.


How Does the Regulatory Genome Work?, Istrail S., J Comput Biol. July 1, 2019; 26 (7): 685-695.


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs)., Campanale JP., Methods Cell Biol. January 1, 2019; 150 269-292.


Culture of and experiments with sea urchin embryo primary mesenchyme cells., Moreno B., Methods Cell Biol. January 1, 2019; 150 293-330.


Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids., Erkenbrack EM., Development. December 18, 2018; 145 (24):


Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus., Yaguchi J., Dev Biol. December 1, 2018; 444 (1): 1-8.


An optogenetic approach to control protein localization during embryogenesis of the sea urchin., Uchida A., Dev Biol. September 1, 2018; 441 (1): 19-30.


Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava., Fan TP., BMC Evol Biol. August 3, 2018; 18 (1): 120.                


Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo., Sepúlveda-Ramírez SP., Dev Biol. May 15, 2018; 437 (2): 140-151.            


Transforming a transcription factor., Burke RD., Elife. January 8, 2018; 7   


Cryo-EM structures of the TMEM16A calcium-activated chloride channel., Dang S., Nature. December 21, 2017; 552 (7685): 426-429.                            


New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus., Martik ML., Mech Dev. December 1, 2017; 148 3-10.


Lectins identify distinct populations of coelomocytes in Strongylocentrotus purpuratus., Liao WY., PLoS One. November 10, 2017; 12 (11): e0187987.            


Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins., Thompson JR., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5870-5877.


Assessing regulatory information in developmental gene regulatory networks., Peter IS., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5862-5869.


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL., PLoS One. April 17, 2017; 12 (4): e0176479.            


Identification of morphogenetic capability limitations via a single starfish embryo/larva reconstruction method., Kawai N., Dev Growth Differ. April 1, 2017; 59 (3): 129-140.


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V., PLoS One. March 28, 2017; 12 (3): e0174404.              


TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo., Sun Z., Dev Biol. January 15, 2017; 421 (2): 149-160.


Role of Mad2 expression during the early development of the sea urchin., Bronchain O., Int J Dev Biol. January 1, 2017; 61 (6-7): 451-457.


An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region., Otim O., Int J Dev Biol. January 1, 2017; 61 (8-9): 537-543.


An integrated modelling framework from cells to organism based on a cohort of digital embryos., Villoutreix P., Sci Rep. December 2, 2016; 6 37438.        


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin., Oulhen N., Dev Biol. October 1, 2016; 418 (1): 146-156.


Cilia play a role in breaking left-right symmetry of the sea urchin embryo., Takemoto A., Genes Cells. June 1, 2016; 21 (6): 568-78.


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm., Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.                


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E., Nat Commun. February 25, 2016; 7 8674.            


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV., Evodevo. January 1, 2016; 7 2.            


Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H., PLoS One. January 1, 2016; 11 (2): e0149067.          


Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML., Elife. September 24, 2015; 4                               


Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics., Gildor T., PLoS Genet. July 31, 2015; 11 (7): e1005435.          


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C., Elife. July 28, 2015; 4                                       


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I., Zygote. June 1, 2015; 23 (3): 426-46.                


microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N., Dev Biol. June 1, 2015; 402 (1): 127-41.


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS., Development. January 1, 2015; 142 (1): 207-17.


Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos., Katow H., Tissue Barriers. January 1, 2015; 3 (4): e1059004.


Regulatory logic and pattern formation in the early sea urchin embryo., Sun M., J Theor Biol. December 21, 2014; 363 80-92.


Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo., Cavalieri V., Elife. December 2, 2014; 3 e04664.                            


Specification to biomineralization: following a single cell type as it constructs a skeleton., Lyons DC., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.


Delayed transition to new cell fates during cellular reprogramming., Cheng X., Dev Biol. July 15, 2014; 391 (2): 147-57.

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???