Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (104) Expression Attributions Wiki
ECB-ANAT-85

Papers associated with hyaline layer

Limit to papers also referencing gene:
Results 1 - 50 of 104 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition., Bodenstein L., Mech Dev. June 1, 2020; 162 103606.


Developmental Consequences of Temperature and Salinity Stress in the Sand Dollar Dendraster excentricus., Abdel-Raheem ST., Biol Bull. December 1, 2019; 237 (3): 227-240.


Identification and expression patterns of extracellular matrix-associated genes fibropellin-ia and tenascin involved in regeneration of sea cucumber Apostichopus japonicus., Ba H., Gene. July 1, 2015; 565 (1): 96-105.


Integrins on eggs: focal adhesion kinase is activated at fertilization, forms a complex with integrins, and is necessary for cortex formation and cell cycle initiation., Chan D., Mol Biol Cell. November 1, 2013; 24 (21): 3472-81.   


Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei., Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.


Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo., Zito F., Matrix Biol. June 1, 2010; 29 (5): 341-5.


Exogenous hyalin and sea urchin gastrulation. Part IV: a direct adhesion assay - progress in identifying hyalin''s active sites., Ghazarian H., Zygote. February 1, 2010; 18 (1): 17-26.


Exogenous hyalin and sea urchin gastrulation. Part III: biological activity of hyalin isolated from Lytechinus pictus embryos., Contreras A., Zygote. November 1, 2008; 16 (4): 355-61.


Exogenous hyalin and sea urchin gastrulation, Part II: hyalin, an interspecies cell adhesion molecule., Alvarez M., Zygote. February 1, 2008; 16 (1): 73-8.


Hyalin is a cell adhesion molecule involved in mediating archenteron-blastocoel roof attachment., Carroll EJ., Acta Histochem. January 1, 2008; 110 (4): 265-75.


Echinonectin is a Del-1-like molecule with regulated expression in sea urchin embryos., Alliegro MC., Gene Expr Patterns. June 1, 2007; 7 (6): 651-6.


Microplate assay for quantifying developmental morphologies: effects of exogenous hyalin on sea urchin gastrulation., Razinia Z., Zygote. May 1, 2007; 15 (2): 159-64.


Proteolytic processing of a sea urchin, ECM-localized protein into lower mol mass species possessing collagen-cleavage activity., Robinson JJ., J Cell Biochem. October 15, 2006; 99 (3): 816-23.


Blastula wall invagination examined on the basis of shape behavior of vesicular objects with laminar envelopes., Bozic B., Int J Dev Biol. January 1, 2006; 50 (2-3): 143-50.


An avidin-like domain that does not bind biotin is adopted for oligomerization by the extracellular mosaic protein fibropellin., Yanai I., Protein Sci. February 1, 2005; 14 (2): 417-23.


Zymogen activation and characterization of a major gelatin-cleavage activity localized to the sea urchin extraembryonic matrix., Ranganathan L., J Cell Biochem. December 15, 2004; 93 (6): 1075-83.


''Nectosome'': a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii., Kato KH., Dev Growth Differ. June 1, 2004; 46 (3): 239-47.


The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity., Qiao D., Environ Health Perspect. November 1, 2003; 111 (14): 1730-5.


Biochemical analysis of hyalin gelation: an essential step in the assembly of the sea urchin extraembryonic matrix, the hyaline layer., Rimsay R., Arch Biochem Biophys. June 15, 2003; 414 (2): 279-86.


Identification and partial characterization of two inducible gelatin-cleavage activities localized to the sea urchin extraembryonic matrix, the hyaline layer., Robinson JJ., Biochim Biophys Acta. April 7, 2003; 1621 (1): 67-75.


Synthesis and secretion of molecules exhibiting the HL1 epitope during development of the hyaline layer of the asteroid Pisaster ochraceus., Pang T., J Morphol. January 1, 2003; 255 (1): 58-68.


Localization and functional role of a 41 kDa collagenase/gelatinase activity expressed in the sea urchin embryo., Mayne J., Dev Growth Differ. August 1, 2002; 44 (4): 345-56.


Role of specialized microvilli and the fertilization envelope in the spatial positioning of blastomeres in early development of embryos of the starfish Astropecten scoparius., Matsunaga M., Biol Bull. June 1, 2002; 202 (3): 213-22.


Ultrastructural aspects of the development of the hyaline layer and extracellular matrix lining the gastrointestinal tract in embryos and larvae of the starfish Pisaster ochraceus preserved by freeze substitution., Pang T., J Morphol. February 1, 2002; 251 (2): 169-81.


An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos., Katow H., Dev Growth Differ. October 1, 2001; 43 (5): 601-10.


Characterization of matrix metalloprotease activities induced in the sea urchin extraembryonic matrix, the hyaline layer., Sharpe C., Biochem Cell Biol. January 1, 2001; 79 (4): 461-8.


Direct molecular interaction of a conserved yolk granule protein in sea urchins., Wessel GM., Dev Growth Differ. October 1, 2000; 42 (5): 507-17.


Relationship between p62 and p56, two proteins of the mammalian cortical granule envelope, and hyalin, the major component of the echinoderm hyaline layer, in hamsters., Hoodbhoy T., Biol Reprod. April 1, 2000; 62 (4): 979-87.


Identification and characterization of gelatin-cleavage activities in the apically located extracellular matrix of the sea urchin embryo., Flood J., Biochem Cell Biol. January 1, 2000; 78 (4): 455-62.


Lectin histochemistry of the hyaline layer around the larvae of Patiriella species (Asteroidea) with different developmental modes., Cerra A., J Morphol. November 1, 1999; 242 (2): 91-9.


Association of the sea urchin EGF-related peptide, EGIP-D, with fasciclin I-related ECM proteins from the sea urchin Anthocidaris crassispina., Hirate Y., Dev Growth Differ. August 1, 1999; 41 (4): 483-94.


Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma., Haag ES., Dev Biol. July 1, 1999; 211 (1): 77-87.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Calcium-protein interactions in the extracellular environment: calcium binding, activation, and immunolocalization of a collagenase/gelatinase activity expressed in the sea urchin embryo., Mayne J., J Cell Biochem. December 15, 1998; 71 (4): 546-58.


Bottle cells are required for the initiation of primary invagination in the sea urchin embryo., Kimberly EL., Dev Biol. December 1, 1998; 204 (1): 235-50.


The apical lamina and its role in cell adhesion in sea urchin embryos., Burke RD., Cell Adhes Commun. March 1, 1998; 5 (2): 97-108.


A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo., Wessel GM., Dev Biol. January 15, 1998; 193 (2): 115-26.


The sea urchin egg yolk granule is a storage compartment for HCL-32, an extracellular matrix protein., Mayne J., Biochem Cell Biol. January 1, 1998; 76 (1): 83-8.


Regulated exocytosis and sequential construction of the extracellular matrix surrounding the sea urchin zygote., Matese JC., Dev Biol. June 1, 1997; 186 (1): 16-26.


Studies on the mechanism for Cai-transients in sea urchin zygotes caused by refertilization and external application of sperm extract., Osawa M., Exp Cell Res. February 25, 1997; 231 (1): 104-11.


The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells., Nakajima Y., Dev Biol. November 1, 1996; 179 (2): 436-46.


Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function., Katow H., Rouxs Arch Dev Biol. May 1, 1996; 205 (7-8): 371-381.


Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny., Bisgrove BW., J Mol Evol. July 1, 1995; 41 (1): 34-45.


Identification of a component of the sea urchin hyaline layer, HLC-175, which undergoes proteolytic processing during development., Robinson JJ., Int J Biochem Cell Biol. July 1, 1995; 27 (7): 675-81.


Structure of the extraembryonic matrices around the benthic embryos of Patiriella exigua (Asteroidea) and their roles in benthic development: Comparison with the planktonic embryos of Patiriella regularis., Cerra A., J Morphol. July 1, 1995; 225 (1): 77-89.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Developmental expression of D-galactoside-binding lectin in sea urchin (Anthocidaris crassispina) eggs., Ozeki Y., Exp Cell Res. February 1, 1995; 216 (2): 318-24.


A novel class of embryonic cell adhesion glycan epitopes is expressed in human colon carcinomas., Misevic GN., J Mol Recognit. January 1, 1995; 8 (1-2): 100-5.


Sperm and its soluble extract cause transient increases in intracellular calcium concentration and in membrane potential of sea urchin zygotes., Osawa M., Dev Biol. November 1, 1994; 166 (1): 268-76.


Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer., Brennan C., Dev Biol. October 1, 1994; 165 (2): 556-65.

Page(s): 1 2 3 Next