Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (63) Expression Attributions Wiki
ECB-ANAT-91

Papers associated with basal lamina

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Multimodal Imaging Study of Gadolinium Presence in Rat Cerebellum: Differences Between Gd Chelates, Presence in the Virchow-Robin Space, Association With Lipofuscin, and Hypotheses About Distribution Pathway., Rasschaert M., Invest Radiol. September 1, 2018; 53 (9): 518-528.                


The complex simplicity of the brittle star nervous system., Zueva O., Front Zool. February 1, 2018; 15 1.                                        


Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells., Kalacheva NV., PLoS One. January 1, 2017; 12 (7): e0182001.                      


Ultrastructural evidence of the excretory function in the asteroid axial organ (Asteroidea, Echinodermata)., Ezhova OV., Dokl Biol Sci. May 1, 2016; 468 (1): 129-32.


Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              


Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima., García-Arrarás JE., BMC Dev Biol. October 17, 2011; 11 61.                    


Soybean and fish oil mixture increases IL-10, protects against DNA damage and decreases colonic inflammation in rats with dextran sulfate sodium (DSS) colitis., Barros KV., Lipids Health Dis. July 8, 2010; 9 68.      


Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea)., Ziegler A., Front Zool. June 9, 2009; 6 10.                      


Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima., San Miguel-Ruiz JE., BMC Dev Biol. October 18, 2007; 7 115.                


Exogonadal oogenesis in a temperate holothurian., Hamel JF., Biol Bull. October 1, 2007; 213 (2): 101-9.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY., Development. March 1, 2007; 134 (6): 1061-70.


Derivation of muscles of the Aristotle''s lantern from coelomic epithelia., Dolmatov IY., Cell Tissue Res. February 1, 2007; 327 (2): 371-84.


Organization of the coelomic lining and a juxtaposed nerve plexus in the suckered tube feet of Parastichopus californicus (Echinodermata: Holothuroida)., Cavey MJ., J Morphol. January 1, 2006; 267 (1): 41-9.


Localization and functional role of a 41 kDa collagenase/gelatinase activity expressed in the sea urchin embryo., Mayne J., Dev Growth Differ. August 1, 2002; 44 (4): 345-56.


Muscle regeneration in holothurians., Dolmatov IY., Microsc Res Tech. December 15, 2001; 55 (6): 452-63.


Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos., Yaguchi S., Dev Growth Differ. October 1, 2000; 42 (5): 479-88.


Pamlin-induced tyrosine phosphorylation of SUp62 protein in primary mesenchyme cells during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus., Katow H., Dev Growth Differ. October 1, 2000; 42 (5): 519-29.


Development of the Larval Serotonergic Nervous System in the Sea Star Patiriella regularis as Revealed by Confocal Imaging., Chee F., Biol Bull. October 1, 1999; 197 (2): 123-131.


alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo., Hertzler PL., Dev Biol. March 1, 1999; 207 (1): 1-13.


Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos., Benson S., Mech Dev. March 1, 1999; 81 (1-2): 37-49.


Calcium-protein interactions in the extracellular environment: calcium binding, activation, and immunolocalization of a collagenase/gelatinase activity expressed in the sea urchin embryo., Mayne J., J Cell Biochem. December 15, 1998; 71 (4): 546-58.


A protein of the basal lamina of the sea urchin embryo., Tesoro V., Dev Growth Differ. October 1, 1998; 40 (5): 527-35.


Ultrastructure and differentiation of the larval esophageal muscle cells of the starfish Pisaster ochraceus., Crawford B., J Morphol. July 1, 1998; 237 (1): 1-18.


The sea urchin egg yolk granule is a storage compartment for HCL-32, an extracellular matrix protein., Mayne J., Biochem Cell Biol. January 1, 1998; 76 (1): 83-8.


Ultrastructure and synthesis of the extracellular matrix of Pisaster ochraceus embryos preserved by freeze substitution., Crawford BJ., J Morphol. May 1, 1997; 232 (2): 133-53.


Primordial Germ Cells of Synaptula hydriformis (Holothuroidea; Echinodermata) Are Epithelial Flagellated-Collar Cells: Their Apical-Basal Polarity Becomes Primary Egg Polarity., Frick JE., Biol Bull. October 1, 1996; 191 (2): 168-177.


Localization and characterization of blastocoelic extracellular matrix antigens in early sea urchin embryos and evidence for their proteolytic modification during gastrulation., Vafa O., Differentiation. June 1, 1996; 60 (3): 129-38.


An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo., Berg LK., Development. February 1, 1996; 122 (2): 703-13.


Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo., Malinda KM., Dev Biol. December 1, 1995; 172 (2): 552-66.


Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo., Katow H., Exp Cell Res. June 1, 1995; 218 (2): 469-78.


Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study., Viebahn C., Acta Anat (Basel). January 1, 1995; 154 (2): 99-110.


Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer., Brennan C., Dev Biol. October 1, 1994; 165 (2): 556-65.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation., Ingersoll EP., Dev Biol. June 1, 1994; 163 (2): 351-66.


Myoepithelium of salivary glands., Redman RS., Microsc Res Tech. January 1, 1994; 27 (1): 25-45.


Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix., Cherr GN., Microsc Res Tech. June 15, 1992; 22 (1): 11-22.


Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells., Tamboline CR., J Exp Zool. April 15, 1992; 262 (1): 51-60.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR., Dev Suppl. January 1, 1992; 33-41.


Cytology and function of the madreporite systems of the starfish Henricia Sanguinolenta and Asterias Vulgaris., Ferguson JC., J Morphol. October 1, 1991; 210 (1): 1-11.


The regulation of primary mesenchyme cell patterning., Ettensohn CA., Dev Biol. August 1, 1990; 140 (2): 261-71.


Microscopic study of the pyloric caeca of the starfish Marthasterias glacialis (Echinodermata): Finding of endocrine cells., Martinez A., J Morphol. November 1, 1989; 202 (2): 151-164.


Ultrastructure of the basal lamina and its relationship to extracellular matrix of embryos of the starfish Pisaster ochraceus as revealed by anionic dyes., Crawford B., J Morphol. March 1, 1989; 199 (3): 349-361.


Extracellular matrix of sea urchin and other marine invertebrate embryos., Spiegel E., J Morphol. January 1, 1989; 199 (1): 71-92.


Cell polarity in sea urchin embryos: reorientation of cells occurs quickly in aggregates., Nelson SH., Dev Biol. June 1, 1988; 127 (2): 235-47.


Development of the esophageal muscles in embryos of the sea urchin Strongylocentrotus purpuratus., Burke RD., Cell Tissue Res. May 1, 1988; 252 (2): 411-7.


Storage and mobilization of extracellular matrix proteins during sea urchin development., Alliegro MC., Dev Biol. January 1, 1988; 125 (1): 208-16.


Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos., Gibson AW., Exp Cell Res. December 1, 1987; 173 (2): 546-57.


Laminin is structurally conserved in the sea urchin basal lamina., McCarthy RA., EMBO J. June 1, 1987; 6 (6): 1587-93.


Inhibition of cell migration in sea urchin embryos by beta-D-xyloside., Solursh M., Dev Biol. December 1, 1986; 118 (2): 325-32.


Presynaptic terminals persist following degeneration of "flight" muscle during development of a flightless grasshopper., Arbas EA., J Neurobiol. November 1, 1986; 17 (6): 627-36.

???pagination.result.page??? 1 2 ???pagination.result.next???