Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (29) Expression Attributions Wiki
ECB-ANAT-278

Papers associated with syncytium

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Are there gap junctions without connexins or pannexins?, Slivko-Koltchik GA., BMC Evol Biol. February 26, 2019; 19 (Suppl 1): 46.      


Calein C, a Sesquiterpene Lactone Isolated From Calea Pinnatifida (Asteraceae), Inhibits Mitotic Progression and Induces Apoptosis in MCF-7 Cells., Caldas LA., Front Pharmacol. October 4, 2018; 9 1191.        


Growth of second stage mineral in Lytechinus variegatus., Stock SR., Connect Tissue Res. July 1, 2018; 59 (4): 345-355.


A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos., Hu MY., Elife. May 1, 2018; 7                         


SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization., Mao Y., Ann Anat. January 1, 2016; 203 38-46.


Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into "osteocyte-like" cells., Alvares K., J Exp Zool B Mol Dev Evol. January 1, 2016; 326 (1): 38-46.


A sea urchin Na(+)K(+)2Cl(-) cotransporter is involved in the maintenance of calcification-relevant cytoplasmic cords in Strongylocentrotus droebachiensis larvae., Basse WC., Comp Biochem Physiol A Mol Integr Physiol. September 1, 2015; 187 184-92.


Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network., Sun Z., Gene Expr Patterns. November 1, 2014; 16 (2): 93-103.


Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide., Majeske AJ., PLoS One. April 16, 2013; 8 (4): e61419.                      


Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos., Costa C., Dev Genes Evol. July 1, 2012; 222 (4): 245-51.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK., Development. March 1, 2011; 138 (5): 937-45.


The proteome of the developing tooth of the sea urchin, Lytechinus variegatus: mortalin is a constituent of the developing cell syncytium., Alvares K., J Exp Zool B Mol Dev Evol. July 15, 2007; 308 (4): 357-70.


Primary mesenchyme cell patterning during the early stages following ingression., Peterson RE., Dev Biol. February 1, 2003; 254 (1): 68-78.


Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus., Illies MR., Dev Genes Evol. October 1, 2002; 212 (9): 419-31.


Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains., Hodor PG., Dev Biol. June 1, 2000; 222 (1): 181-94.


The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo., Hodor PG., Dev Biol. July 1, 1998; 199 (1): 111-24.


Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo., Ingersoll EP., Dev Biol. April 1, 1998; 196 (1): 95-106.


Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis., Wilt FH., Bioessays. August 1, 1997; 19 (8): 665-8.


Origin of the epidermis in parasitic platyhelminths., Tyler S., Int J Parasitol. June 1, 1997; 27 (6): 715-38.


Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues., Guss KA., Development. May 1, 1997; 124 (10): 1899-908.


Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues., Malinda KM., Dev Biol. August 1, 1994; 164 (2): 562-78.


Analysis of competence in cultured sea urchin micromeres., Page L., Exp Cell Res. December 1, 1992; 203 (2): 305-11.


Immunogold detection of glycoprotein antigens in sea urchin embryos., Benson NC., Am J Anat. January 1, 1989; 185 (2-3): 177-82.


Developmental distribution of a cell surface glycoprotein in the sea urchin Strongylocentrotus purpuratus., Decker GL., Dev Biol. October 1, 1988; 129 (2): 339-49.


Expression of a collagen gene in mesenchyme lineages of the Strongylocentrotus purpuratus embryo., Angerer LM., Genes Dev. February 1, 1988; 2 (2): 239-46.


A large calcium-binding protein associated with the larval spicules of the sea urchin embryo., Iwata M., Cell Differ. December 1, 1986; 19 (4): 229-36.


METAMORPHOSIS OF STICHOPUS CALIFORNICUS (ECHINODERMATA: HOLOTHUROIDEA) AND ITS PHYLOGENETIC IMPLICATIONS., Smiley S., Biol Bull. December 1, 1986; 171 (3): 611-631.


Serum effects on the in vitro differentiation of sea urchin micromeres., McCarthy RA., Exp Cell Res. December 1, 1983; 149 (2): 433-41.

???pagination.result.page??? 1