Results 1 - 50 of 66 results
Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. , Tsironis I., Dev Biol. July 1, 2021; 475 131-144.
A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo. , Martínez-Bartolomé M ., Development. December 16, 2019; 146 (24):
cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. , Yamazaki A., Genesis. June 1, 2019; 57 (6): e23302.
Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. , Range RC ., Dev Biol. December 15, 2018; 444 (2): 83-92.
Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus. , Yaguchi J., Dev Biol. December 1, 2018; 444 (1): 1-8.
Anteroposterior molecular registries in ectoderm of the echinus rudiment. , Adachi S., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.
A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos. , Khadka A., Evodevo. January 22, 2018; 9 1.
Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. , Wood NJ., Front Endocrinol (Lausanne). January 1, 2018; 9 628.
New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus. , Perillo M ., Front Endocrinol (Lausanne). January 1, 2018; 9 650.
Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. , Burguera D., Nat Commun. November 27, 2017; 8 (1): 1799.
Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. , Mellott DO., Development. October 1, 2017; 144 (19): 3602-3611.
Correction: An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. , Range RC ., Development. April 15, 2017; 144 (8): 1579.
Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins. , Kitazawa C., Biol Open. November 15, 2016; 5 (11): 1555-1566.
A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos. , Cheatle Jarvela AM., Development. November 15, 2016; 143 (22): 4214-4223.
Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos. , Krupke OA., Elife. July 30, 2016; 5
An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. , Range RC ., Development. May 1, 2016; 143 (9): 1523-33.
Cooperative Wnt- Nodal Signals Regulate the Patterning of Anterior Neuroectoderm. , Yaguchi J., PLoS Genet. April 21, 2016; 12 (4): e1006001.
Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. , Israel JW., PLoS Biol. March 1, 2016; 14 (3): e1002391.
Neurogenic gene regulatory pathways in the sea urchin embryo. , Wei Z., Development. January 15, 2016; 143 (2): 298-305.
Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo. , Martik ML., Elife. September 24, 2015; 4
An optimised whole mount in situ hybridisation protocol for the mollusc Lymnaea stagnalis. , Hohagen J., BMC Dev Biol. March 28, 2015; 15 19.
A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. , Saina M., Nat Commun. February 18, 2015; 6 6243.
Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. , Kaul-Strehlow S., Org Divers Evol. January 1, 2015; 15 (2): 405-422.
bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo. , Yaguchi S ., Sci Rep. October 31, 2014; 4 6852.
Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo. , Li E., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.
Specification and positioning of the anterior neuroectoderm in deuterostome embryos. , Range R ., Genesis. March 1, 2014; 52 (3): 222-34.
Nuclearization of β- catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva. , Byrum CA ., Evodevo. November 4, 2013; 4 (1): 31.
Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos. , Jin Y., Cytoskeleton (Hoboken). August 1, 2013; 70 (8): 453-70.
Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. , Yankura KA., Proc Natl Acad Sci U S A. May 21, 2013; 110 (21): 8591-6.
Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system. , Bishop CD., Dev Biol. May 1, 2013; 377 (1): 236-44.
Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. , Range RC ., PLoS Biol. January 1, 2013; 11 (1): e1001467.
Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei. , Bennett KC., Biol Bull. April 1, 2012; 222 (2): 105-17.
Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. , Yaguchi J., Dev Biol. March 1, 2012; 363 (1): 74-83.
Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea). , Rahman MA., ScientificWorldJournal. January 1, 2012; 2012 938482.
Fez function is required to maintain the size of the animal plate in the sea urchin embryo. , Yaguchi S ., Development. October 1, 2011; 138 (19): 4233-43.
The evolution of nervous system patterning: insights from sea urchin development. , Angerer LM ., Development. September 1, 2011; 138 (17): 3613-23.
Atypical protein kinase C controls sea urchin ciliogenesis. , Prulière G., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.
Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni. , Takata H., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.
Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. , Saudemont A., PLoS Genet. December 23, 2010; 6 (12): e1001259.
ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. , Yaguchi S ., Dev Biol. December 1, 2010; 348 (1): 67-75.
Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. , Jackson DJ., Dev Genes Evol. December 1, 2010; 220 (7-8): 221-34.
Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. , Yankura KA., BMC Biol. November 30, 2010; 8 143.
Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). , Vellutini BC., PLoS One. March 22, 2010; 5 (3): e9654.
The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. , Wei Z., Development. April 1, 2009; 136 (7): 1179-89.
Neural development of the brittlestar Amphiura filiformis. , Dupont S., Dev Genes Evol. March 1, 2009; 219 (3): 159-66.
Specification process of animal plate in the sea urchin embryo. , Sasaki H., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.
A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos. , Semenova MN., ACS Chem Biol. February 15, 2008; 3 (2): 95-100.
Development of the nervous system in the brittle star Amphipholis kochii. , Hirokawa T., Dev Genes Evol. January 1, 2008; 218 (1): 15-21.
A Wnt- FoxQ2- nodal pathway links primary and secondary axis specification in sea urchin embryos. , Yaguchi S ., Dev Cell. January 1, 2008; 14 (1): 97-107.
Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension. , Katow H., Int J Dev Biol. January 1, 2008; 52 (8): 1077-88.