Latest Publications

Subscribe to Latest Publications feed Latest Publications
NCBI: db=pubmed; Term=(((((((((echinoderm) AND developmental biology) OR strongylocentrotus purpuratus) OR patiria miniata) OR lytechinus variegatus) OR eucidaris tribuloides) OR parastichopus parvimensis) OR ophiothrix apiculata) OR allocentrotus fragilis) OR strongylocentrotus franciscanus AND ( ( Humans[Mesh] OR Animals[Mesh:noexp] ) ) AND ("last 5 years"[PDat])
Updated: 11 hours 41 min ago

Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.

Tue, 10/01/2019 - 13:09
Related Articles

Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.

J Gen Physiol. 2018 06 04;150(6):851-862

Authors: Cherny VV, Morgan D, Thomas S, Smith SME, DeCoursey TE

Abstract
We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis, HtHV1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtHV1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pHi). The H+ conductance (gH)-V relationship in the voltage-gated proton channel (HV1) from other species shifts 40 mV when either pHi or pHo (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of HV1 in many species and in numerous human tissues. The HtHV1 channel exhibits normal pHo dependence but anomalously weak pHi dependence. In this study, we show that a single point mutation in human hHV1-changing His168 to Gln168, the corresponding residue in HtHV1-compromises the pHi dependence of gating in the human channel so that it recapitulates the HtHV1 response. This location was previously identified as a contributor to the rapid gating kinetics of HV1 in Strongylocentrotus purpuratus His168 mutation in human HV1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pHo dependence, but changing pHi shifts the gH-V relationship on average by <20 mV/unit. Thus, His168 is critical to pHi sensing in hHV1. His168, located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in HV1 that significantly impairs pH sensing when mutated. Because pHo dependence remains intact, the selective erosion of pHi dependence supports the idea that there are distinct internal and external pH sensors. Although His168 may itself be a pHi sensor, the converse mutation, Q229H, does not normalize the pHi sensitivity of the HtHV1 channel. We hypothesize that the imidazole group of His168 interacts with nearby Phe165 or other parts of hHV1 to transduce pHi into shifts of voltage-dependent gating.

PMID: 29743300 [PubMed - indexed for MEDLINE]

Categories: pubmed

Co-option of the PRDM14-CBFA2T complex from motor neurons to pluripotent cells during vertebrate evolution.

Tue, 09/10/2019 - 12:34
Related Articles

Co-option of the PRDM14-CBFA2T complex from motor neurons to pluripotent cells during vertebrate evolution.

Development. 2019 01 28;146(2):

Authors: Kawaguchi M, Sugiyama K, Matsubara K, Lin CY, Kuraku S, Hashimoto S, Suwa Y, Yong LW, Takino K, Higashida S, Kawamura D, Yu JK, Seki Y

Abstract
Gene regulatory networks underlying cellular pluripotency are controlled by a core circuitry of transcription factors in mammals, including POU5F1. However, the evolutionary origin and transformation of pluripotency-related transcriptional networks have not been elucidated in deuterostomes. PR domain-containing protein 14 (PRDM14) is specifically expressed in pluripotent cells and germ cells, and is required for establishing embryonic stem cells (ESCs) and primordial germ cells in mice. Here, we compared the functions and expression patterns of PRDM14 orthologues within deuterostomes. Amphioxus PRDM14 and zebrafish PRDM14, but not sea urchin PRDM14, compensated for mouse PRDM14 function in maintaining mouse ESC pluripotency. Interestingly, sea urchin PRDM14 together with sea urchin CBFA2T, an essential partner of PRDM14 in mouse ESCs, complemented the self-renewal defect in mouse Prdm14 KO ESCs. Contrary to the Prdm14 expression pattern in mouse embryos, Prdm14 was expressed in motor neurons of amphioxus embryos, as observed in zebrafish embryos. Thus, Prdm14 expression in motor neurons was conserved in non-tetrapod deuterostomes and the co-option of the PRDM14-CBFA2T complex from motor neurons into pluripotent cells may have maintained the transcriptional network for pluripotency during vertebrate evolution.This article has an associated 'The people behind the papers' interview.

PMID: 30630825 [PubMed - indexed for MEDLINE]

Categories: pubmed

Experiments reveal limited top-down control of key herbivores in southern California kelp forests.

Tue, 09/03/2019 - 12:08
Related Articles

Experiments reveal limited top-down control of key herbivores in southern California kelp forests.

Ecology. 2019 03;100(3):e02625

Authors: Dunn RP, Hovel KA

Abstract
Predator responses to gradients in prey density have important implications for population regulation and are a potential structuring force for subtidal marine communities, particularly on rocky reefs where herbivorous sea urchins can drive community state shifts. On rocky reefs in southern California where predatory sea otters have been extirpated, top-down control of sea urchins by alternative predators has been hypothesized but rarely tested experimentally. In laboratory feeding assays, predatory spiny lobsters (Panulirus interruptus) demonstrated a saturating functional response to urchin prey, whereby urchin proportional mortality was inversely density-dependent. In field experiments on rocky reefs near San Diego, California, predators (primarily the labrid fish California sheephead, Semicossyphus pulcher) inflicted highly variable mortality on purple urchin (Strongylocentrotus purpuratus) prey across all density levels. However, at low to moderate densities commonly observed within kelp forests, purple urchin mortality increased to a peak at a density of ~11 urchins/m2 . Above that level, at densities typical of urchin barrens, purple urchin mortality was density-independent. When larger red urchins (Mesocentrotus franciscanus) were offered to predators simultaneously with purple urchins, mortality was density-independent. Underwater videography revealed a positive relationship between purple urchin density and both the number and richness of fish predators, but these correlations were not observed when red urchins were present. Our results demonstrate highly variable mortality rates across prey densities in this system and suggest that top-down control of urchins can occur only under limited circumstances. Our findings provide insight into the dynamics of alternate community states observed on rocky reefs.

PMID: 30648729 [PubMed - indexed for MEDLINE]

Categories: pubmed

Transforming a transcription factor.

Thu, 08/29/2019 - 12:03
Related Articles

Transforming a transcription factor.

Elife. 2018 01 08;7:

Authors: Burke RD

Abstract
A transcription factor that regulates skeleton formation in sea urchin embryos has evolved a new domain that is essential for this process.

PMID: 29309030 [PubMed - indexed for MEDLINE]

Categories: pubmed

Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus.

Tue, 08/27/2019 - 12:02
Related Articles

Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus.

Environ Pollut. 2019 Aug;251:530-537

Authors: Gutner-Hoch E, Martins R, Maia F, Oliveira T, Shpigel M, Weis M, Tedim J, Benayahu Y

Abstract
Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy.

PMID: 31108285 [PubMed - indexed for MEDLINE]

Categories: pubmed

Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry.

Wed, 08/21/2019 - 11:39
Related Articles

Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry.

J Am Soc Mass Spectrom. 2018 05;29(5):923-934

Authors: Monroe EB, Annangudi SP, Wadhams AA, Richmond TA, Yang N, Southey BR, Romanova EV, Schoofs L, Baggerman G, Sweedler JV

Abstract
Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. Graphical Abstract.

PMID: 29667164 [PubMed - indexed for MEDLINE]

Categories: pubmed